The weight $w(v)$ of a vertex $v \in V(G)$ under an edge labeling $g : E \to \{1, 2, \ldots, |E|\}$ is the sum of the labels of edges incident to the vertex v.

A connected graph $G = (V, E)$ is said to be (a, d)-antimagic (K. Wagner and R. Bodendiek, 1993) if there exist positive integers a, d and bijection $g : E(G) \to \{1, 2, \ldots, |E(G)|\}$ such that the induced mapping $\delta_g : V(G) \to W$ is also a bijection, where $W = \{w(v) : v \in V(G)\} = \{a, a + d, \ldots, a + (|V(G)\ | - 1)d\}$ is the set of weights of vertices.

The following papers deal with (a, d)-antimagic labelings.

(a, d)-vertex-antimagic total labelings

The vertex-weight $wt(x)$ of a vertex $x \in V$, under a labeling $f : V \cup E \to \{1, 2, \ldots, |V| + |E|\}$, is the sum of values $f(xy)$ assigned to all edges incident to a given vertex x together with the value assigned to x itself.

A bijection $f : V \cup E \to \{1, 2, \ldots, |V| + |E|\}$ is called an (a, d)-vertex-antimagic total labeling of G if the set of vertex-weights of all vertices in G is $\{a, a + d, a + 2d, \ldots, a + (|V| - 1)d\}$, where $a > 0$ and $d \geq 0$ are two fixed integers.

Such labeling is said to be super if the vertices of G receive the labels $1, 2, \ldots, |V|$.

The following papers deal with the (a, d)-vertex-antimagic total labelings.

