Face-antimagic labelings

A labeling of type (1, 1, 1) assigns labels from the set \(\{1, 2, 3, \ldots, |V(G)| + |E(G)| + |F(G)|\} \) to the vertices, edges and faces of plane graph \(G \) in such a way that each vertex, edge and face receives exactly one label and each number is used exactly once as a label.

A labeling of type (1, 0, 0) is a bijection from the set \(\{1, 2, 3, \ldots, |V(G)| + |E(G)|\} \) to the vertices and edges of plane graph \(G \).

If we label only vertices (respectively edges, faces) we call such a labeling a vertex (respectively edge, face) labeling and also the labeling is said to be of type (1, 0, 0) (respectively type (0, 1, 0), type (0, 0, 1)).

The weight of a face under a labeling is the sum of labels (if present) carried by that face and the edges and vertices surrounding it.

A labeling of plane graph \(G \) is called \(d \)-antimagic if for every number \(s \) the set of \(s \)-sided face weights is \(W_s = \{a_s, a_s + d, a_s + 2d, \ldots, a_s + (f_s - 1)d\} \) for some integers \(a_s \) and \(d \), \(d \geq 0 \), where \(f_s \) is the number of \(s \)-sided faces.

We allow different sets \(W_s \) for different \(s \). If \(s \) is the same for each face, then there is just one arithmetic sequence comprising the set of face weights and we may speak of a graph being \((a, d) \)-face antimagic. Many common types of plane graphs have "almost" all faces the same, for example, the prism which consists of all-but-two 4-sided faces; or the antiprism which consists of all-but-two 3-sided faces. Such graphs are easily modified so that they contain all the same faces and so that we can consider \((a, d) \)-face antimagic labeling on them.

If \(d = 0 \) then Ko-Wei Lih called such labeling magic (face-magic).

If \(d = 1 \) then \(d \)-antimagic labeling is called consecutive.

Face-antimagic labelings are investigated in the following papers:

- Baˇca, M.- Bashir, F.: On super \(d \)-antimagic labelings of disjoint union of

