The weight \(w(v) \) of a vertex \(v \in VF(G) \) under an edge labeling \(g : E \to \{1, 2, ..., |E|\} \) is the sum of the labels of edges incident to vertex \(v \).

A connected graph \(G = (V, E) \) is said to be \((a, d)\)-antimagic (K. Wagner and R. Bodendiek, 1993) if there exist positive integers \(a, d \) and bijection \(g : E(G) \to \{1, 2, ..., |E(G)|\} \) such that the induced mapping \(\delta_g : V(G) \to W \) is a bijection, where \(W = \{w(v) : v \in V(G)\} = \{a, a + d, ..., a + (|V(G)| - 1)d\} \) is the set of weights of vertices.

The weight \(w(f) \) of a face \(f \in F(G) \) under an edge labeling \(g : E \to \{1, 2, ..., |E|\} \) is the sum of the labels of edges surrounding that face.

A connected plane graph \(G = (V, E, F) \) is said to be \((a, d)\)-face antimagic if there exist positive integers \(a, d \) and bijection \(g : E(G) \to \{1, 2, ..., |E(G)|\} \) such that the induced mapping \(\psi_g : F(G) \to W \) is also a bijection, where \(W = \{w(f) : f \in F(G)\} = \{a, a + d, ..., a + (|F(G)| - 1)d\} \) is the set of weights of faces.

The following papers deal with \((a, d)\)-antimagic or \((a, d)\)-face antimagic labelings.

- Miller, M. - Bača, M. - Lin, Y.: On two conjectures concerning \((a, d)\)-antimagic labelings of antiprisms, JCMCC 37 (2001), 251-254.