Homework #2

- 2. I. Consider the function $f(t) = e^{\lambda t}$. Evaluate:
 - a) its Riemann-Liouville derivative $_0D_t^{\alpha}f(t)$
 - b) its Caputo derivative ${}_0^C D_t^{\alpha} f(t)$.

Which derivative is bounded at t = 0?

2. 2. Consider the function $g(t) = t^{\alpha-1} E_{\alpha,\alpha}(-t^{\alpha})$.

Find its Riemann-Liouville derivative $_0D_t^{\alpha}g(t)$.

2. 3. Find the inverse Laplace transforms of

a)
$$Y(s) = \frac{s^{\alpha - 1}}{s^{\alpha} + b}$$

b)
$$H(s) = \frac{1}{as^{\alpha} + bs^{\beta}}$$

2.4. Find the inverse Laplace transforms of

a)
$$Q(s) = \frac{1}{s + 5s^{0.5} + 6}$$

b)
$$R(s) = \frac{A\sqrt{s}}{s\sqrt{s}+1} + \frac{2\sqrt{s}}{s^3(s\sqrt{s}+1)}$$