Homework \#I

I. I. Check if the functions

$$
\begin{gathered}
y_{3}(t)=t^{(\beta-1) n / m} E_{m / n, \beta}(t), \\
y_{4}(t)=t^{(\beta-1) n} E_{1 / n, \beta}(t),
\end{gathered}
$$

satisfy the following equations:

$$
\begin{aligned}
\left(\frac{m}{n} t^{1-\frac{n}{m}} \frac{d}{d t}\right)^{m} y_{3}(t)-y_{3}(t) & =t^{(\beta-1) n / m} \sum_{k=1}^{n} \frac{t^{-k}}{\Gamma\left(\beta-\frac{m}{n} k\right)} \\
(m, n & =1,2,3, \ldots)
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{n} \frac{d y_{4}(t)}{d t}: \quad-t^{n-1} y_{4}(t)=t^{\beta n-1} \sum_{k=1}^{n} \frac{t^{-k}}{\Gamma\left(\beta-\frac{k}{n}\right)} \\
(n=1,2,3, \ldots)
\end{gathered}
$$

I. 2. Using the relationships

$$
\begin{aligned}
& E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \\
& \sum_{\nu=-m}^{m} e^{i 2 \pi \nu k /(2 m+1)}= \begin{cases}2 m+1, & \text { if } k \equiv 0 \\
0, & \text { if } k \not \equiv 0 \\
0, & (\bmod 2 m+1)\end{cases}
\end{aligned}
$$

demonstrate that

$$
E_{\alpha, \beta}(z)=\frac{1}{2 m+1} \sum_{\nu=-m}^{m} E_{\alpha /(2 m+1), \beta}\left(z^{1 /(2 m+1)} e^{i 2 \pi \nu /(2 m+1)}\right), \quad(m \geq 0)
$$

I. 3. Using term-by-term integration and

$$
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}
$$

demonstrate that

$$
\int_{0}^{z} E_{\alpha, \beta}\left(\lambda t^{\alpha}\right) t^{\beta-1} d t=z^{\beta} E_{\alpha, \beta+1}\left(\lambda z^{\alpha}\right), \quad(\beta>0)
$$

