

## Fractional-order systems


$G_{s}(s)=\frac{1}{a_{n} s^{\beta_{n}}+a_{n-1} s^{\beta_{n-1}}+\ldots+a_{1} s^{\beta_{1}}+a_{0} s^{\beta_{0}}}$
$a_{n} D^{\beta_{n}} y(t)+a_{n-1} D^{\beta_{n-1}} y(t)+\ldots+a_{0} D^{\beta_{0}} y(t)=u(t)$

## Bode's ideal loop transfer function



General characteristics of the Bode's ideal transfer function:
(a) Open loop:

- Magnitude: constant slope of $-\alpha 20 d B /$ decec;
- Crossover frequency: a function of $K$;
- Phase: horizontal line of $-\alpha_{\frac{\pi}{2}}^{5} ;$
- Nyquist: straight line at argument $-\alpha \frac{\pi}{2}$.
(b) Closed loop
- Gain margin: $A_{m}=$ infinte,

Phase margin: constant : $\boldsymbol{\Phi}_{m}=\pi\left(1-\frac{\Omega}{2}\right)$
Step response: $y(t)=K t^{a} E_{\alpha, a+1}\left(-K t^{a}\right)$

## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers


$G_{c}(s)=\frac{U(s)}{E(s)}=K_{p}+K_{I} s^{-\lambda}+K_{D} s^{\mu}$ $u(t)=K_{p} e(t)+K_{I} D^{-\lambda} e(t)+K_{D} D^{\mu} e(t)$

Bode's ideal loop transfer function: example
The transfer function of a DC motor is

$$
G(s)=\frac{K_{m}}{J s(s+1)}
$$

$J$ is payload inertia
Assume that we would like to have a closed loop system that is insensitive to gain variations with a constant phase margin of $60^{\circ}$. Bode's ideal loop transfer function that gives this phase margin is

$$
G_{o}(s)=\frac{1}{s \sqrt[3]{s}}
$$

## Bode's ideal loop transfer function: example

Since $G_{o}(s)=C(s) G(s)$, the controller transfer function is

$$
C(s)=\frac{J}{K_{m}}\left(s^{2 / 3}+\frac{1}{s^{1 / 3}}\right)
$$

this is a particular case of fractional PID
The obtained phase margin is $60^{\circ}$ :

$$
\Phi_{m}=\arg [C(j \omega) G(j \omega)]+\pi=\arg \left[\frac{1}{(j \omega)^{4 / 3}}\right]+\pi=\pi-\frac{4}{3} \frac{\pi}{2}=\frac{\pi}{3} .
$$

Step response:

$$
y(t)=L^{-1}\left\{\frac{1}{s\left(s^{1+1 / 3}+1\right)}\right\}=t^{1+1 / 3} E_{1+1 / 3,2+1 / 3}\left(-t^{1+1 / 3}\right)
$$

## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers

Fractional-order PID controllers: from points to plane


## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers



## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers


"Control of the "reality" and the "model" using a classical PD controller, which is optimal for the "model"


## $\mathrm{P}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

The design of $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers can be based on gain and phase margin specifications:

```
\Re[C(j\mp@subsup{\omega}{p}{})]\Re[P(j\mp@subsup{\omega}{p}{})]-\Im[C(j\mp@subsup{\omega}{p}{})]\Im[P(j\mp@subsup{\omega}{p}{})]=-\frac{1}{\mp@subsup{A}{m}{\prime}},
\Re[C(j\mp@subsup{\omega}{p}{})]\Im[P(j\mp@subsup{\omega}{p}{})]+\Im[C(j\mp@subsup{\omega}{p}{})]\Re[P(j\mp@subsup{\omega}{p}{})]=0,
\Re[C(j\mp@subsup{\omega}{g}{\prime})]\Re[P(j\mp@subsup{\omega}{g}{})]-\Im[C(j\mp@subsup{\omega}{g}{})]\Im[P(j\mp@subsup{\omega}{g}{})]=-\operatorname{cos}\mp@subsup{\Phi}{m}{},
\Re[C(j\mp@subsup{\omega}{g}{})]\Im[P(j\mp@subsup{\omega}{g}{})]+\Im[C(j\mp@subsup{\omega}{g}{})]\Re[P(j\mp@subsup{\omega}{g}{})]=-\operatorname{sin}\mp@subsup{\Phi}{m}{},
```



## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

- The plant model is assumed to be

$$
G(s)=\frac{1}{a_{1} s^{\alpha}+a_{2} s^{\beta}+a_{3}}
$$

- and the fractional order PID controller is

$$
G_{c}(s)=K_{P}+\frac{K_{I}}{s^{l}}+K_{D} s^{\mu}
$$

- It is expected that the gain and phase margin of the compensated systems are $A_{m}$ and $\phi_{m}$
- Question: how to choose $\mathrm{PI}^{\lambda} \mathrm{D}^{\mu}$ parameters


## $\mathrm{P}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

Design of fractional-order PID controller parameters is determined by given requirements.
These requirements can be, for example:

- the damping ratio,
- the steady-state error,
- dynamical properties,
- etc.


## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

Requiring $\left|G_{c}\left(j \omega_{g}\right) G_{p}\left(j \omega_{g}\right)\right|=1, \quad \arg \left[G_{c}\left(j \omega_{p}\right)\left(G_{p}\left(j \omega_{p}\right)\right]=-\pi\right.$ it can be found that
$K_{P}+\frac{K_{I}}{\omega_{p}^{\alpha}} \cos \frac{\pi \lambda}{2}+K_{D} \omega_{p}^{\mu} \cos \frac{\pi \mu}{2}=-\frac{a_{1}}{A_{m}} \omega_{p}^{\alpha} \cos \frac{\pi \alpha}{2}-\frac{a_{2}}{A_{m}} \omega_{p}^{\beta} \cos \frac{\pi \beta}{2}-\frac{a_{3}}{A_{m}}$
$K_{P}+\frac{K_{I}}{\omega_{8}^{c}} \cos \frac{\pi \lambda}{2}+K_{D} \omega_{g}^{\mu} \cos \frac{\pi \mu}{2}=-a_{1} \omega_{s}^{\alpha} \cos \left(\frac{\pi \alpha}{2}+\phi_{m}\right)-a_{2} \omega_{g}^{\beta} \cos \left(\frac{\pi \beta}{2}+\phi_{m}\right)-a_{3} \cos \phi_{m}$
$K_{P}+\frac{K_{I}}{\omega_{g}^{2}} \cos \frac{\pi \lambda}{2}+K_{D} \omega_{g}^{\mu} \cos \frac{\pi \mu}{2}$
$=-a_{1} \omega_{8}^{\alpha} \cos \left(\frac{\pi \alpha}{2}+\phi_{m}\right)-a_{2} \omega_{g}^{\beta} \cos \left(\frac{\pi \beta}{2}+\phi_{m}\right)-a_{3} \cos \phi_{m}$
$-K_{I} \frac{\sin \frac{\pi}{2}}{\omega_{8}^{2}}+K_{D} \sin \frac{\pi \mu}{2} \omega_{g}^{\mu}=-a_{1} \omega_{g}^{\alpha} \sin \left(\frac{\pi \alpha}{2}+\phi_{m}\right)-a_{2} \omega_{g}^{\beta} \sin \left(\frac{\pi \beta}{2}+\phi_{m}\right)-a_{3} \sin \phi_{m}$

## $P I^{\lambda} D^{\mu}$ controllers: design

We have four equations with seven variables:

$$
\left(\omega_{p}, \omega_{g}, \lambda, \mu, K_{I}, K_{P}, K_{D}\right)
$$

The rest of the variables can be determined by minimizing the ISE criterion $\int_{0}^{\infty} e^{2}(t) \mathrm{d} t$

## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

I. General Description of Linear Fractional Order Systems
I. 1 The normal form

$$
G(s)=\frac{b_{1} s^{\gamma_{1}}+b_{2} s^{\gamma_{2}}+\cdots+b_{m} s^{\gamma_{m}}}{a_{1} s^{\eta_{1}}+a_{2} s^{\eta_{2}}+\cdots+a_{n-1} s^{l_{n-1}}+a_{n} s^{\eta_{n}}}
$$

- Thus compared with IO LTI's, information on orders are also used
- A FOTF model class/object can be defined in MATLAB to describe the system model


## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

Sample plots for various combinations of $\lambda$ and $\mu$ :


## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

II. 1 Create a @fotf directory

- The fotf class can be defined as
function $G=$ fot $f(a, n a, b, n b)$
if nargin== ,
G.a=[]; G.na=[]; G.b=[]; G.nb=[];

G=class(G,'fotf');
elseif isa(a,'fotf'),
G=a
else,
G.a=a; G.na=na; G.b=b; G.nb=nb;

G=class(G, 'fotf');
end

## $\mathrm{P}^{\lambda} \mathrm{D}^{\mu}$ controllers: design

The optimal $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ controller:


## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- Function call $G=\operatorname{fotf}(a, \eta, b, \gamma)$
- A display function
function display(G)
stril=polydisp(G.b,G.nb); strD=polydisp(G.a, G.na);
nm=max([length(strN), length(strD)]); nn=length(strN); nd=length(strD);


function strP=polydisp $(\mathrm{p}, \mathrm{np})$
for $\mathrm{i}=1: 1$ length $(\mathrm{p})$

${ }_{P=P} \quad$ end





## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- Example
$G(s)=\frac{-2 s^{0.63}-4}{2 s^{3.501}+3.8 s^{2.42}+2.6 s^{1.798}+2.5 s^{1.31}+1.5}$
- MATLAB command
>> b=[-2,-4]; nb=[0.63,0]; a=[2 3.8 2.6 2.5 1.5]; na=[3.501, 2.42, 1.798, 1.31,0]; G=fotf(a,na,b,nb)
- Display
----------------------20.6\}


## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- Plus function for parallel connections
function $\mathrm{G}=\mathrm{plus}(\mathrm{G} 1, \mathrm{G} 2)$
$\mathrm{a}=\mathrm{kron}(\mathrm{G1} 1 . \mathrm{a}, \mathrm{G} 2 . \mathrm{a})$; na=[]; nb=[];
$\mathrm{b}=[\mathrm{kron}(\mathrm{G} 1 . \mathrm{a}, \mathrm{G} 2 . \mathrm{b})$, $\operatorname{kron}(\mathrm{G} 1 . \mathrm{b}, \mathrm{G} 2 . \mathrm{a})]$;
for $i=1$ : length(G1.a), na=[na G1.na(i)+G2.na];
$\mathrm{nb}=[\mathrm{nb}, \mathrm{G} 1 . \mathrm{na}(\mathrm{i})+\mathrm{G} 2 . \mathrm{nb}]$;
end
for $i=1$ :length (G1.b), nb=[nb G1.nb(i)+G2.na]
end
$G=u n i q u e(f o t f(a, n a, b, n b))$;


## $\mathrm{Pl}^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- Multiplication for series connection
function G=mtimes(G1,G2)
a=kron(G1.a,G2.a); b=kron(G1.b,G2.b); na=[]; nb=[] for $i=1: l$ length(G1.na), na=[na,G1.na(i) $\mathrm{G} 2 . \mathrm{na}$; end for $\mathrm{i}=1$ : length(G1.nb), nb=[nb, G1.nb(i) $+\mathrm{G} 2 . \mathrm{nb}]$; end
$G=u n i q u e(f o t f(a, n a, b, n b))$;
- Minus function $\mathrm{G}=\mathrm{minus}(\mathrm{G} 1, \mathrm{G} 2)$ $\mathrm{G}=\mathrm{G} 1+(-\mathrm{G} 2)$;
- Uminus function $\mathrm{G}=\mathrm{uminus}(\mathrm{G} 1)$ $\mathrm{G}=\mathrm{fotf}(\mathrm{G1} . \mathrm{a}, \mathrm{G1} . \mathrm{na},-\mathrm{G1} . \mathrm{b}, \mathrm{G} 1 . \mathrm{nb})$;
- Inv function $G=i n v(G 1)$
$\mathrm{G}=\mathrm{fotf}(\mathrm{G1} . \mathrm{b}, \mathrm{G1} . \mathrm{nb}, \mathrm{G1} . \mathrm{a}, \mathrm{G1} . \mathrm{na})$;


## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- Feedback function
function $\mathrm{G}=$ feedback ( $\mathrm{F}, \mathrm{H}$ )
b=kron(F.b,H.a); na=[]; nb=[];
$\mathrm{a}=[\mathrm{kron}(\mathrm{F} . \mathrm{b}, \mathrm{H} . \mathrm{b}), \operatorname{kron}(\mathrm{F} . \mathrm{a}, \mathrm{H} . \mathrm{a})]$;
for $i=1$ : length( $F . b$ ),
nb=[nb F.nb(i)+H.nb]; na=[na,F.nb(i)+H.nb]; end
for $i=1$ :length(F.a), na=[na F.na(i)+H.na]; end $G=u n i q u e(f o t f(a, n a, b, n b))$;
- These functions are suitable for interconnections of fractional order systems


## Pl ${ }^{\lambda} \mathrm{D}^{\mu}$ control: MATLAB

- A common function unique
function $G=u n i q u e(G)$
[a,n]=polyuniq(G.a,G.na); G.a=a; G.na=n;
$[a, n]=$ polyuniq(G.b,G.nb); G.b=a; G.nb=n;
function [a, an]=polyuniq(a,an)
[an,ii]=sort(an,'descend'); a=a(ii);
ax=diff(an); key=1;
for $i=1$ :length (ax)
if $\mathrm{ax}(\mathrm{i})==0$,
$a($ key $)=a($ key $)+a($ key +1$) ; a($ key +1$)=[] ;$
an(key+1)=[];
else, key=key+1; end
end

Example of interconnection:

- Unity negative feedback system with

$$
\begin{aligned}
& G(s)=\frac{0.8 s^{1.2}+2}{1.1 s^{1.8}+0.8 s^{1.3}+1.9 s^{0.5}+0.4} \\
& G_{c}(s)=\frac{1.2 s^{0.72}+1.5}{3 s^{0.8}}
\end{aligned}
$$

- The closed-loop system
$\gg G=f o t f([1.1,0.81 .90 .4],[1.81 .30 .50],[0.82],[1.20]) ;$ $G \mathrm{Gc}=\mathrm{fotf}([3],[0.8],[1.21 .5],[0.720]) ; \mathrm{H}=\mathrm{fotf}(1,0,1,0)$; $G G=$ feedback $\left(G^{*}{ }^{*} G c, H\right)$


## Continued fractions (CFE)

$$
\begin{aligned}
G(s) & \simeq a_{0}(s)+\frac{b_{1}(s)}{a_{1}(s)+\frac{b_{2}(s)}{a_{2}(s)+\frac{b_{3}(s)}{a_{3}(s)+\ldots}}} \\
& =a_{0}(s)+\frac{b_{1}(s)}{a_{1}(s)+} \frac{b_{2}(s)}{a_{2}(s)+} \frac{b_{3}(s)}{a_{3}(s)+}
\end{aligned}
$$

## CFEs and nested multiple loops

$$
\begin{gathered}
\pm+\mathrm{G}(\mathrm{~s})_{+\mathrm{H}(\mathrm{~s})}
\end{gathered} \quad R(s)=\frac{G(s)}{1+G(s) H(s)} .
$$

A control loop with a negative feedback.


Nested multiple-loop control system - level 2 .

## CFEs and nested multiple loops


$P_{2 n-2}(s)=\frac{Q_{2 n-1}(s)}{1+Q_{2 n-1}(s) Y_{2 n-2}(s)}=\frac{1}{Y_{2 n-2}(s)+\frac{1}{Q_{2 n-1}(s)}}$

$$
=\frac{1}{Y_{2 n-2}(s)+\frac{1}{Z_{2 n-1}(s)+\frac{1}{Y_{2 n}(s)}}}
$$

Nested multiple-loop control system - level 3.

$Q_{2 n-3}(s)=Z_{2 n-3}(s)+P_{2 n-2}(s)$
$=Z_{2 n-3}(s)+\frac{1}{Y_{2 n-2}(s)+\frac{1}{Z_{2 n-1}(s)+\frac{1}{Y_{2 n}(s)}}}$

## CFEs and nested multiple loops




## General CFE method

A rational approximation for $G(s)=s^{-\alpha}, 0<\alpha<1$

$$
\text { Wightrequencies ( } \omega T \ggg>1)
$$

## CFEs and nested multiple loops

 can be obtained by CFE of the following expressions:$$
\begin{aligned}
H_{h}(s) & =\frac{1}{(1+s T)^{\alpha}} \\
H_{l}(s) & =\left(1+\frac{1}{s}\right)^{\alpha}
\end{aligned}
$$

Tow frequencees $\omega \ll 1$ )

## Example:

Performing the CFE of the function $H_{h}(s)$, with $T=1, \alpha=0.5$, we obtain:

## General Approach to Fractances

A devices or a circuit exhibiting fractional-order behaviour is called a fractance.

- domino ladder circuit network,
- a tree structure of electrical elements,
- transmission line circuit

Design of fractances can be using a truncated CFE, which gives a rational approximation.

## General Approach to Fractances

Domino ladder circuit


## General Approach to Fractances

Example I: design a domino ladder circuit with

$$
Z(s)=\frac{s^{4}+4 s^{2}+1}{s^{3}+s}
$$

Find a CFE: $\quad Z(s)=\frac{s^{4}+4 s^{2}+1}{s^{3}+s}=s+\frac{1}{\frac{1}{3} s+\frac{1}{\frac{9}{2} s+\frac{1}{\frac{2}{3}}}}$
Therefore, $\quad Z_{1}(s)=s ; \quad Z_{3}(s)=\frac{9}{2} s ; \quad Y_{2}(s)=\frac{1}{3} s ; \quad Y_{1}(s)=\frac{2}{3} s$,
For the first Cauer's canonic LC circuits we must take

$$
L_{1}=1[H] ; \quad L_{3}=\frac{9}{2}[H] ; \quad C_{2}=\frac{1}{3}[F] ; \quad C_{4}=\frac{2}{3}[F] .
$$

## General Approach to Fractances

Example II: design a domino ladder circuit with

$$
\begin{gathered}
Z(s)=\frac{s^{4}+3 s^{2}+8}{2 s^{3}+4 s} \\
\text { We have: } \quad Z(s)=\frac{s^{4}+3 s^{2}+8}{2 s^{3}+4 s}=\frac{1}{2} s+\frac{1}{2 s+\frac{1}{-\frac{1}{12} s+\frac{1}{-\frac{3}{2} s}}} \\
Z_{1}(s)=\frac{1}{2} s ; \quad Z_{3}(s)=-\frac{1}{12} s ; \quad Y_{2}(s)=2 s ; \quad Y_{4}(s)=-\frac{3}{2} s, \\
L_{1}=\frac{1}{2}[H] ; \quad L_{3}=-\frac{1}{12}[H] ; \quad C_{2}=2[F] ; \quad C_{4}=-\frac{3}{2}[F] .
\end{gathered}
$$

Notice negative values - can be done using OpAmps

## General Approach to Fractances

Transmission lines circuit


## General Approach to Fractances

Tree structure circuit

phase angle is constant $-\pi / 4$, independent of the frequency

## General Approach to Fractances

Sample implementations:



## General Approach to Fractances

Sample implementations -- transmission lines -- responses:


## General Approach to Fractances

Sample implementations:


## Stability of fractional order systems

Commensurate order systems:

$$
G(s)=K \frac{\sum_{k=0}^{m} b_{k}\left(s^{\alpha}\right)^{k}}{\sum_{k=0}^{n} a_{k}\left(s^{\alpha}\right)^{k}}=K \frac{N\left(s^{\alpha}\right)}{D\left(s^{\alpha}\right)}
$$

For example:

$$
G(s)=\frac{1}{s^{2 / 3}-s^{1 / 2}+1 / 2}
$$

can be written as

$$
G(\lambda)=\frac{1}{\lambda^{4}-\lambda^{3}+1 / 2} \quad \lambda=s^{1 / 6}
$$

## Stability of fractional order systems

- The $\Gamma$ curve
- if $\lambda=s^{\alpha}$, then the stable condition for the system is $\left|\arg \left(\lambda_{i}\right)\right|>\alpha \pi / 2$


$$
G(\lambda)=\frac{1}{\lambda^{4}-\lambda^{3}+1 / 2}
$$

with four poles in the stable region

