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Bode’s ideal loop transfer function 
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Hendrik Wade Bode
(1905-1982)

H.W. Bode, Network Analysis and Feedback Amplifier Design. 
D. Van Nostrand Company, Inc., New York, 1945.

Bode’s ideal loop transfer function:

CHAPTER 3. FRACTIONAL-ORDER CONTROLLERS 13

Figure 3.2: PID controller: from points to plane.

For a wide class of controlled objects we recommend the fractional PInDδ

controller, which is a particular case of PIλDδ controller, where λ = n, n ∈
N and δ ∈ R. Integer order integrator is important for steady-state error

cancellation but on the other hand the fractional integral is also important for
obtaining a Bode’s ideal loop transfer function response with constant phase

margin for desired frequency range (e.g. [1, 3, 23, 51]).

3.2.2 Bode’s ideal loop transfer function

Bode suggested an ideal shape of the loop transfer function in his work on

design of feedback amplifiers in 1945. Ideal loop transfer function has form:

L(s) =

(
s

ωgc

)α

, (3.6)

where ωgc is desired crossover frequency and α is slope of the ideal cut-off

characteristic.
Phase margin is Φm = π(1+α/2) for all values of the gain. The amplitude

margin Am is infinity. The constant phase margin 60o, 45o and 30o correspond
to the slopes α = −1.33, −1.5 and −1.66.

The Nyquist curve for ideal Bode transfer function is simply a straight line
through the origin with arg(L(jω)) = απ/2 (see e.g. [1, 39]).

Bode’s transfer function (3.6) can be used as a reference system in the

following form:

Gc(s) =
K

sα + K
(0 < α < 2) (3.7)

Go(s) =
K

sα
(0 < α < 2), (3.8)

where Gc is transfer function of closed loop and Go(s) is transfer function in
open loop. General characteristics of Bode’s ideal transfer function are:
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Figure 3.3: Bode’s ideal loop.

(a) Open loop:

• Magnitude: constant slope of −α20dB/dec.;

• Crossover frequency: a function of K;

• Phase: horizontal line of −απ
2 ;

• Nyquist: straight line at argument −απ
2 .

(b) Closed loop:

• Gain margin: Am = infinite;

• Phase margin: constant : Φm = π
(
1 − α

2

)
;

• Step response: y(t) = KtαEα,α+1 (−Ktα) ,
where Ea,b(z) is Mittag-Leffler function of two parameters [43].

3.2.3 Illustrative example

We can illustrate the fractional order control properties by an example. As-
suming that the transfer function of the DC motor is

G(s) =
Km

Js(s + 1)
, (3.9)

with J being the payload inertia. Our specification is the constant phase
margin independent of the payload changes.

Assume that we would like to have a closed loop system that is insensitive

to gain variations with a constant phase margin of 60o. Bode’s ideal loop
transfer function that gives this phase margin is

Go(s) =
1

s 3
√

s
. (3.10)

General characteristics of the Bode’s ideal transfer function:
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Figure 3.4: Bode plots of transfer function (3.8).

Since Go(s) = C(s)G(s), we can find the controller transfer function in the

following form

C(s) =
J

Km

(
s2/3 +

1

s1/3

)
= K

(
s2/3 +

1

s1/3

)
, (3.11)

which is a particular case of the transfer function of the PIλDδ controller (3.1),
where K = J/Km is the controller constant.

The phase margin of the controlled system with a forward loop controller
Gc(s) is

Φm = arg[C(jω0)G(jω0)] + π, (3.12)

where ω0 is the crossover frequency.
The obtained phase margin is

Φm = arg[C(jω)G(jω)] + π = arg

[
1

(jω)4/3

]
+ π = π − 4

3

π

2
=

π

3
. (3.13)

The constant phase margin is not dependent of the payload changes and the

system gain K and phase curve is a horizontal line at −2π/3.
Step response of closed control loop can be expressed as:

y(t) = L−1

{
1

s (s1+1/3 + 1)

}
= t1+1/3E1+1/3, 2+1/3

(
−t1+1/3

)
, (3.14)

where step response is independent of the payload inertia and α = 4/3.
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Bode’s ideal loop transfer function: example

The transfer function of a DC motor is
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J is payload inertia

Assume that we would like to have a closed loop 
system that is insensitive to gain variations with a 
constant phase margin of 60o. Bode’s ideal loop 
transfer function that gives this phase margin is 
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Since                         ,  the controller transfer function is
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this is a particular case of fractional PID

The obtained phase margin is 60o :
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The constant phase margin is not dependent of the payload changes and the

system gain K and phase curve is a horizontal line at −2π/3.
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Step response:
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Figure 3.4: Bode plots of transfer function (3.8).

Since Go(s) = C(s)G(s), we can find the controller transfer function in the

following form

C(s) =
J

Km

(
s2/3 +

1

s1/3

)
= K

(
s2/3 +

1

s1/3

)
, (3.11)

which is a particular case of the transfer function of the PIλDδ controller (3.1),
where K = J/Km is the controller constant.

The phase margin of the controlled system with a forward loop controller
Gc(s) is

Φm = arg[C(jω0)G(jω0)] + π, (3.12)

where ω0 is the crossover frequency.
The obtained phase margin is

Φm = arg[C(jω)G(jω)] + π = arg

[
1

(jω)4/3

]
+ π = π − 4

3

π

2
=

π

3
. (3.13)

The constant phase margin is not dependent of the payload changes and the

system gain K and phase curve is a horizontal line at −2π/3.
Step response of closed control loop can be expressed as:

y(t) = L−1

{
1

s (s1+1/3 + 1)

}
= t1+1/3E1+1/3, 2+1/3

(
−t1+1/3

)
, (3.14)

where step response is independent of the payload inertia and α = 4/3.
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Figure 3.2: PID controller: from points to plane.

For a wide class of controlled objects we recommend the fractional PInDδ

controller, which is a particular case of PIλDδ controller, where λ = n, n ∈
N and δ ∈ R. Integer order integrator is important for steady-state error

cancellation but on the other hand the fractional integral is also important for
obtaining a Bode’s ideal loop transfer function response with constant phase

margin for desired frequency range (e.g. [1, 3, 23, 51]).

3.2.2 Bode’s ideal loop transfer function

Bode suggested an ideal shape of the loop transfer function in his work on

design of feedback amplifiers in 1945. Ideal loop transfer function has form:

L(s) =

(
s

ωgc

)α

, (3.6)

where ωgc is desired crossover frequency and α is slope of the ideal cut-off

characteristic.
Phase margin is Φm = π(1+α/2) for all values of the gain. The amplitude

margin Am is infinity. The constant phase margin 60o, 45o and 30o correspond
to the slopes α = −1.33, −1.5 and −1.66.

The Nyquist curve for ideal Bode transfer function is simply a straight line
through the origin with arg(L(jω)) = απ/2 (see e.g. [1, 39]).

Bode’s transfer function (3.6) can be used as a reference system in the

following form:

Gc(s) =
K

sα + K
(0 < α < 2) (3.7)

Go(s) =
K

sα
(0 < α < 2), (3.8)

where Gc is transfer function of closed loop and Go(s) is transfer function in
open loop. General characteristics of Bode’s ideal transfer function are:

PI!Dµ controllers
Fractional-order PID controllers: 
from points to plane

Comparison of unit step responses
of the fractional-order “reality” and 
its integer-order “model”

PI!Dµ controllers

PI!Dµ controllers

Control of the “reality” and the 
“model” using a classical PD 
controller, which is optimal 
for the “model”



PI!Dµ controllers

Control of the “reality” and the 
“model” using a classical PD 
controller, which is optimal 
for the “model”, 

after detuning (aging) of the  
controller (when TD = 1).

PI!Dµ controllers

Control of the „reality“
using the PD controller,
which is optimal for the 
„model“, and using the 
PD" controller.

Design of fractional-order PID controller 
parameters is determined by given requirements. 
These requirements can be, for example: 

• the damping ratio, 

• the steady-state error, 

• dynamical properties, 

• etc.

PI!Dµ controllers: design
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3.3 Design of controller parameters

The tuning of PIλDδ controller parameters is determined according to the

given requirements. These requirements are, for example, the damping ratio,
the steady-state error (ess), dynamical properties, etc. One of the methods

being developed is the method of dominant roots [37], based on the given
stability measure and the damping ratio of the closed control loop. Assuming
that, the desired dominant roots are a pair of complex conjugate root as follows:

s1,2 = −σ ± jωd,

designed for the damping ratio ζ and natural frequency ωn. The damping
constant (stability measure) is σ = ζωn and the damped natural frequency of
oscillation ωd = ωn

√
1 − ζ2. The design of parameters: Kp, Ti, λ, Td and δ

can be computed numerically from characteristic equation. More specifically,
for simple plant model P (s), this can be done by solving

min
Kp,Ti,λ,Td,δ

||C(s)P (s) + 1||s=−σ±jωd
.

Another possible way to obtain the controller parameters is using the tuning

formula, based on gain and phase margins specifications [52]:






" [C (jωp)]" [P (jωp)] − # [C (jωp)]# [P (jωp)] = − 1
Am

,

" [C (jωp)]# [P (jωp)] + # [C (jωp)]" [P (jωp)] = 0,
" [C (jωg)]" [P (jωg)] − # [C (jωg)]# [P (jωg)] = − cos Φm,
" [C (jωg)]# [P (jωg)] + # [C (jωg)]" [P (jωg)] = −sinΦm,

where Φm is a phase margin, Am is a gain margin, ωp and ωg is 0dB (crossover)
frequency.

Last but not least we should mention the optimization algorithm based on

the integral absolute error (IAE) minimization [44]:

IAE (t) =

∫ t

0

|e(t)|dt =

∫ t

0

|w(t) − y(t)|dt,

where w(t) is the desired value of closed control loop and y(t) is the real value

of closed control loop.
This method does not insure the desired stability measure of the closed

control loop. Measure of stability has to be checked out additionally. We can
use a frequency method described in [39].

PI!Dµ controllers: design

The design of PI!D" controllers can be based on gain 
and phase margin specifications:
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IV.2 A           Design Approach

• The plant model is assumed to be

• and the fractional order PID controller is

• It is expected that the gain and phase margin of 

the compensated systems are     and

• Question: how to choose         parameters

PI!Dµ controllers: design

PI!Dµ controllers: design

Requiring  
it can be found that
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The rest of the variables can be determined 
by minimizing the ISE criterion

We have four equations with seven variables:

FOC tutorial III
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• For

• It is found that

• Four equations, with 7 variables 

FOC tutorial III

©Dingyu Xue, NEU, PR China
30

• For different µ, ! combinations

PI!Dµ controllers: design

Sample plots for various combinations of ! and µ:

PI!Dµ controllers: design
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• A fractional order PID controller can be 

designed such thatThe optimal PI!Dµ controller:

FOC tutorial III
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I.  General Description of Linear 

Fractional Order Systems

I.1  The normal form

• Thus compared with IO LTI’s, information on 

orders are also used

• A FOTF model class/object can be defined in 

MATLAB to describe the system model

PI!Dµ control: MATLAB

Courtesy: Dingyü Xue, YangQuan Chen

FOC tutorial III

©Dingyu Xue, NEU, PR China
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II. MATLAB Class Design

II.1  Create a @fotf directory

• The fotf class can be defined as

PI!Dµ control: MATLAB

Courtesy: Dingyü Xue, YangQuan Chen
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II.2  Other Overload Functions

• Function call

• A display function

PI!Dµ control: MATLAB

Courtesy: Dingyü Xue, YangQuan Chen



PI!Dµ control: MATLAB

FOC tutorial III

©Dingyu Xue, NEU, PR China
6

II.3  Define a fotf Object in MATLAB

• Example

• MATLAB command

• Display

Courtesy: Dingyü Xue, YangQuan Chen
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II.4  Overload functions for block 

• Plus function for parallel connections

PI!Dµ control: MATLAB

Courtesy: Dingyü Xue, YangQuan Chen

PI!Dµ control: MATLAB
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• Multiplication for series connection

• Minus

• Uminus

• Inv

Courtesy: Dingyü Xue, YangQuan Chen

PI!Dµ control: MATLAB
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• Feedback function

• These functions are suitable for 

interconnections of fractional order systems

Courtesy: Dingyü Xue, YangQuan Chen

PI!Dµ control: MATLAB
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• A common function unique

Courtesy: Dingyü Xue, YangQuan Chen

PI!Dµ control: MATLAB

Example of interconnection:
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II.5  An Example for interconnection

• Unity negative feedback system with

• The closed-loop system can be established

FOC tutorial III

©Dingyu Xue, NEU, PR China
12

The closed-loop system can be 

obtained as

• The closed-loop system

• The closed-loop systems with even more 

complicated structures can easily be obtained 

with the overloaded functions
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can be expressed in the form:

G(s) ! a0(s) +
b1(s)

a1(s) + b2(s)

a2(s)+
b3(s)

a3(s)+...

= a0(s) +
b1(s)

a1(s)+

b2(s)

a2(s)+

b3(s)

a3(s)+
. . . (4.1)

where ais and bis are rational functions of the variable s, or are constants.

The application of the method yields a rational function, Ĝ(s), which is an
approximation of the irrational function G(s).

On the other hand, for interpolation purposes, rational functions are some-
times superior to polynomials. This is, roughly speaking, due to their ability
to model functions with poles. (As it can be seen later, branch points can be

considered as accumulations of interlaced poles and zeros). These techniques
are based on the approximations of an irrational function, G(s), by a rational

function defined by the quotient of two polynomials in the variable s:

G(s) ! Ri(i+1)...(i+m) =
Pµ(s)

Qν(s)

=
p0 + p1s + . . . + pµsµ

q0 + q1s + . . . + qνsν
(4.2)

m + 1 = µ + ν + 1

passing through the points (si, G(si)), . . . , (si+m, G(si+m)).

4.3 CFE and stability of linear systems

It is also known that continuous fraction expansions can be used for investi-
gating stability of linear systems. For this, the characteristic polynomial Q(s)

of the differential equation of the system should be divided in two parts, the
“even” part (containing even powers of s) and the “odd” part (containing odd

powers of s):
Q(s) = m(s) + n(s).

Then this two parts of the characteristic polynomial are used for creating
its test function in the form of a fraction, in which the highest power of s is

contained in the denominator:

R(s) =
m(s)

n(s)

(
or R(s) =

n(s)

m(s)

)
.
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Figure 4.1: A control loop with a negative feedback.

The rational function R(s) should be written in the form of a continuous

fraction:
R(s) =

1

b1s +
1

b2s +
1

. . . . . . . . . . . .

bn−1s +
1

bns

(4.3)

If bk > 0, k = 1, . . . , n, then the system is stable. If some bk is negative,
then the system is unstable.

Considering the continued fraction (4.3) as a tool for designing a corre-

sponding LC circuit, we can conclude that stability of a linear system is equiv-
alent to realizability of its test function R(s) with the help of only passive

electric components.

4.4 CFE and nested multiple-loop

control systems

Let us now establish an interesting new relationship between continued frac-
tions and nested multiple-loop control systems.

We first recall the known fact that the transfer function R(s) of the control

loop with a negative feedback shown in Fig. 4.1 is given by [8]

R(s) =
G(s)

1 + G(s)H(s)
. (4.4)

From (4.4) it immediately follows that the transfer function of the circuit

shown in Fig. 4.2 is

P2n(s) =
1

1 + 1 · Y ∗
2n(s)

=
1

Y2n(s)
, (4.5)

where Y2n(s) = Y ∗
2n(s) + 1.

CFEs and nested multiple loops
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-
1

Y*
2n(s)

Z (s)2n -1

+ +

+

Figure 4.3: Nested multiple-loop control system – level 2.

Using the equations (4.4) and (4.5) we obtain the transfer function of the
system shown in Fig. 4.3:

Q2n−1(s) = Z2n−1(s) + P2n(s) = Z2n−1(s) +
1

Y2n(s)
. (4.6)

Combining the equations (4.4) and (4.5) we find the transfer function of

the nested multiple-loop system shown in Fig. 4.4:

P2n−2(s) =
Q2n−1(s)

1 + Q2n−1(s)Y2n−2(s)
=

1

Y2n−2(s) +
1

Q2n−1(s)

=
1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

(4.7)

The transfer function of the system shown in Fig. 4.5 is then given by the
relationship

Q2n−3(s) = Z2n−3(s) + P2n−2(s)

= Z2n−3(s) +
1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

(4.8)

Continuing this process, we obtain the transfer function of the nested multiple-
loop control system shown in Fig. 4.6 in the form of a continued fraction
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Using the equations (4.4) and (4.5) we obtain the transfer function of the
system shown in Fig. 4.3:

Q2n−1(s) = Z2n−1(s) + P2n(s) = Z2n−1(s) +
1

Y2n(s)
. (4.6)

Combining the equations (4.4) and (4.5) we find the transfer function of

the nested multiple-loop system shown in Fig. 4.4:
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=
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=
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The transfer function of the system shown in Fig. 4.5 is then given by the
relationship
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= Z2n−3(s) +
1
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1
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Continuing this process, we obtain the transfer function of the nested multiple-
loop control system shown in Fig. 4.6 in the form of a continued fraction
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Using the equations (4.4) and (4.5) we obtain the transfer function of the
system shown in Fig. 4.3:
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. (4.6)
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Continuing this process, we obtain the transfer function of the nested multiple-
loop control system shown in Fig. 4.6 in the form of a continued fraction
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Figure 4.5: Nested multiple-loop control system – level 4.
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Figure 4.6: Nested multiple-loop control system of the first type.

expansion, which is identical with the equation (6.1):

Z(s) = Z1(s) +
1

Y2(s) +
1

Z3(s) +
1

Y4(s) +
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

Similarly to the above considerations, we can obtain a continued fraction
expansion of the transfer function of the other interesting type of a nested
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Figure 4.6: Nested multiple-loop control system of the first type.
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Nested loop of type I

CFEs and nested multiple loops
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Both types of nested multiple-loop systems, presented in this section, can
be used for simulations and realizations of arbitrary transcendental transfer

functions. For this, the transfer function should be developed in a continued
fraction, which after truncation can be represented by a nested multiple-loop

system shown in Fig. 4.6 or Fig. 4.7.

4.5 CFE and rational and irrational numbers

Every rational and irrational number may be written in CFE form. Basically
the process of finding a continued fraction development consists of two steps:
if the fraction m/n is greater than 1, then divide. Otherwise, write the fraction

m/n as 1/(n/m) and proceed with the first step. Continue until a numerator
of 1 is obtained. Continued fractions are often used to get good rational

approximations for real numbers. Let us consider the numbers written in the
form: a0 + b1/(a1 + b2/(a2 + b3/(a3 + . . . ))). In ”simple” continued fractions,

all the bi, ∀i, are 1 and the number can be re-written as [a0; a1, a2, a3, . . . ].

Example 4.5.1.
The CFE for π, which gives the ”best” approximation of a given order, is

[3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ...]. The very large
term 292 means that the following convergent is a good approximation [13].

[3, 7, 15, 1] = [3, 7, 16] =
355

113
= 3.14159292 . . .

Nested loop of type II
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General CFE method

A rational approximation for 
can be obtained by CFE of the following expressions:
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nominator polynomials. Probably, this fact was noted for the first time in [17],

where the following idea appeared: a dense interlacing of simple poles and
zeros along a line in the s plane is, in some way, equivalent to a branch cut;
and sα, 0 < α < 1, viewed as an operator, has a branch cut along the negative

real axis for arguments of s on (−π, π) but is otherwise free of poles and zeros.

5.2 General CFE method

In general [10], a rational approximation of the function G(s) = s−α, 0 < α < 1
(the fractional integral operator in the Laplace domain) can be obtained by

performing the CFE of the functions:

Hh(s) =
1

(1 + sT )α
(5.1)

Hl(s) =

(
1 +

1

s

)α

(5.2)

where Hh(s) is the approximation for high frequencies (ωT >> 1), and Hl(s)
the approximation for low frequencies (ω << 1).

Example 5.2.1.

Performing the CFE of the function (5.1), with T = 1, α = 0.5, we obtain:

H1(s) =
0.3513s4 + 1.405s3 + 0.8433s2 + 0.1574s + 0.008995

s4 + 1.333s3 + 0.478s2 + 0.064s + 0.002844

Example 5.2.2.

Performing the CFE of the function (5.2), with T = 1, α = 0.5, we obtain:

H2(s) =
s4 + 4s3 + 2.4s2 + 0.448s + 0.0256

9s4 + 12s3 + 4.32s2 + 0.576s + 0.0256

5.3 Carlson’s method

The method proposed by Carlson in [4, 5], derived from a regular Newton

process used for iterative approximation of the α-th root, can be considered
as belonging to this group. The starting point of the method is the statement

of the following relationships:

(H(s))1/α − (G(s)) = 0; H(s) = (G(s))α (5.3)
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General Approach to Fractances

A devices or a circuit exhibiting fractional-order 
behaviour is called a fractance.

• domino ladder circuit network,

• a tree structure of electrical elements,

• transmission line circuit

Design of fractances can be using a truncated CFE, 
which gives a rational approximation.

General Approach to Fractances

S. C. Dutta Roy on  Khovanskii’s CFE for x1/2: 

General Approach to Fractances
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6.1.2 Negative impedance converters

It can be shown that the use of CFE for analogue realization of arbitrary
transfer functions may lead to the appearance of negative impedances. This

observation is not unknown. For example, in the paper [10] S. C. Dutta Roy
recalls Khovanskii’s continued fraction expansion for x1/2 found in [19] and

makes a remark that

“. . . if x is replaced by the complex frequency variable s, then
the realization would require a negative resistance. Thus, the [Kho-
vanskii’s] CFEs do not seem to be useful for realization of fractional

inductor or capacitor.”

Then he describes a method for circumventing this difficulty, which gives
a continued fraction expansion with positive coefficients.

However, the possibility of realization of negative impedances in electric
circuits has been pointed out by Bode [3, Chapter IX]. Later, in 1970s, opera-

tional amplifiers appeared, which significantly simplified creation of circuits ex-
hibiting negative resistances, negative capacitances, and negative inductances.
Such circuits are called negative-impedance converters [9].

The simplest scheme of a negative impedance converter (or current inverter)
is shown in Fig. 6.1. The circuit consists of an operational amplifier, two

resistors of equal resistance R, and a component with the impedance Z. The
entire circuit, considered as a single element, has negative impedance −Z.

This means that Iin = Vin/(−Z)).
For example, taking a resistor of resistance RZ instead of the element Z, we

obtain a circuit, which behaves like a negative resistance −RZ . The negative

resistance means that if such an element of negative resistance, for instance,
−10 kΩ is connected in series with a classical 20 kΩ resistor, then the resistance

of the resulting connection is 10 kΩ.

R

R

Z

+

_

I
in

Vin

Figure 6.1: Negative-impedance converter.

However, the possibility of realization of negative 
impedances in electric circuits has been pointed out 
by H. W. Bode in 1945.

General Approach to Fractances

Negative impedance converters are available:

General Approach to Fractances
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6.2 Domino ladder circuit

Z1 Z Z Z2n -3 2n -1

Y Y Y Y2 2n -2 2n

3

4Z(s)

Figure 6.2: Finite ladder circuit.

Domino ladder lattice networks can approximate fractional operator more
effectively than the lumped networks [10, 30].

Let us consider the circuit depicted in Fig. 6.2, where Z2k−1(s) and Y2k(s),
k = 1, . . . , n, are given impedances of the circuit elements. The resulting
impedance Z(s) of the entire circuit can be found easily, if we consider it in
the right-to-left direction:

Z(s) = Z1(s)+
1

Y2(s) +
1

Z3(s) +
1

Y4(s) +
1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

(6.1)

The relationship between the finite domino ladder network, shown in Fig. 6.2,
and the continued fraction (6.1) provides an easy method for designing a circuit

with a given impedance Z(s). For this one has to obtain a continued fraction
expansion for Z(s). Then the obtained particular expressions for Z2k−1(s) and
Y2k(s), k = 1, . . . , n, will give the types of necessary components of the circuit

and their nominal values.

Example 6.2.1.

To design a circuit with the impedance

Z(s) =
s4 + 4s2 + 1

s3 + s
, (6.2)
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General Approach to Fractances

Example 1: design a domino ladder circuit with 
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Find a CFE:

CHAPTER 6. GENERAL APPROACH TO FRACTANCE DEVICES 33

we have to develop Z(s) in continued fraction

Z(s) =
s4 + 4s2 + 1

s3 + s
= s +

1
1

3
s +

1
9

2
s +

1
2

3
s

. (6.3)

From this expansion it follows that

Z1(s) = s; Z3(s) =
9

2
s; Y2(s) =

1

3
s; Y4(s) =

2

3
s.

Therefore, for the analogue realization in the form of the first Cauer’s

canonic LC circuit [20] we have to choose the following values of coils and
capacitors:

L1 = 1 [H ]; L3 =
9

2
[H ]; C2 =

1

3
[F ]; C4 =

2

3
[F ].

Example 6.2.2.
The function Z(s) given by equation (6.2) can be written also in the form
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To design a circuit with the impedance
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, (6.5)

We have:
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one has to obtain a continuous fraction representation of the function Z(s),
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From this expansion it follows that

Z1(s) =
1

2
s; Z3(s) = − 1

12
s; Y2(s) = 2s; Y4(s) = −3

2
s.

Therefore, for the analogue realization in the form of the first Cauer’s
canonic LC circuit [20] we have to choose the following values of coils and

capacitors:

L1 =
1

2
[H ]; L3 = − 1

12
[H ]; C2 = 2 [F ]; C4 = −3

2
[F ].

Here we see negative inductances and capacitance. Such elements cannot
be realized using passive electric components. However, they can be realized

with the help of active components, namely operating amplifiers. We can
realize this by negative inpedance converter which was described in previous

subsection.

6.3 Transmission lines circuit

Let us consider the circuit depicted in Fig. 6.3, where Z2k−1(s) and Y2k(s), k =
1, . . . , n, are given impedances of the circuit elements. This structure is known
as a transmission line or a symetrical domino ladder lattice network as well.

The resulting impedance Z(s) of the entire circuit can be expressed as a CFE
described by (6.1) with symetrical distribution of elements, Z2k−1(s) = Z2k(s)

and Y2k−1(s) = Y2k(s), k = 1, . . . , n.
In the case if we assume the same elements in transmision line in series

(Za) and the same in shunt (Zb), we get a structure depicted in Fig. 6.4.
Impedance of such kind of transmision line, which can be used also as a

model of real cable line (solved by O. Heaviside in 1887), can be expressed as

Z(s) =
√

Za.Zb. (6.7)

If we substitute a resistance Za = R and a capacitance Zb = 1/sC, then the

impedance is

Z(s) =

√
R

C
s−1/2 =

√
R

C
ω−1/2 e−jπ/4|s=jω. (6.8)
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Notice negative values - can be done using OpAmps
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Figure 6.3: General structure of transmission line.
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Figure 6.4: Transmission line circuit composed of two inpedance Za and Zb.

6.4 Tree structure circuit

Let us consider the total impedance of the fractance circuit as shown in Fig. 6.5,

which has a recursive structure with the combination of two impedances Za

and Zb. Impedance is derived as geometrical mean of Za and Zb,

Z(s) =
√

Za.Zb.

If we substitute a resistance Za = R and a capacitance Zb = 1/sC, then
the impedance shows the fractance characteristics as (see also (6.8))

Z(s) =

√
R

C
s−1/2 =

√
R

C
ω−1/2 e−jπ/4|s=jω,

which is a fractional order integral with absolute value of impedance propor-

tional to ω−1/2 and phase angle is constant −π/4, independent of the frequency.
However, it is impossible to construct such an infinity structure as show in

Fig. 6.5. Therefore, it seems to be important to study the effect of the num-

ber of stage in the recursive self infinity (binary) structure on the impedance
characteristics [31].

A similar tree structure as a fractal model of rough interface between two
materials of very different conductivities, e.g. an electrode and an electrolyte

was studied in [21]. There was described a slightly different structure of tree
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Take

Then
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6.4 Tree structure circuit

Let us consider the total impedance of the fractance circuit as shown in Fig. 6.5,

which has a recursive structure with the combination of two impedances Za

and Zb. Impedance is derived as geometrical mean of Za and Zb,

Z(s) =
√

Za.Zb.

If we substitute a resistance Za = R and a capacitance Zb = 1/sC, then
the impedance shows the fractance characteristics as (see also (6.8))

Z(s) =

√
R

C
s−1/2 =

√
R

C
ω−1/2 e−jπ/4|s=jω,

which is a fractional order integral with absolute value of impedance propor-

tional to ω−1/2 and phase angle is constant −π/4, independent of the frequency.
However, it is impossible to construct such an infinity structure as show in

Fig. 6.5. Therefore, it seems to be important to study the effect of the num-

ber of stage in the recursive self infinity (binary) structure on the impedance
characteristics [31].

A similar tree structure as a fractal model of rough interface between two
materials of very different conductivities, e.g. an electrode and an electrolyte

was studied in [21]. There was described a slightly different structure of tree

CHAPTER 6. GENERAL APPROACH TO FRACTANCE DEVICES 36

Z(s)

Za

Zb

Za

Zb

Za

Zb

Za

Za

Za

Za

Zb

Zb

Zb

Zb

Figure 6.5: A self-similar tree circuit composed of two inpedance Za and Zb.

circuit, where capacitance C was the same at every stage and resistance R
increased by the ratio a at every stage of branching. The resulting impedance

Z(s) had the form of a continued fraction expansion.
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one has to obtain a continuous fraction representation of the function Z(s),

Z(s) =
s4 + 3s2 + 8

2s3 + 4s
=

1

2
s +

1

2s +
1

− 1

12
s +

1

−3

2
s

(6.6)

From this expansion it follows that

Z1(s) =
1

2
s; Z3(s) = − 1

12
s; Y2(s) = 2s; Y4(s) = −3

2
s.

Therefore, for the analogue realization in the form of the first Cauer’s
canonic LC circuit [20] we have to choose the following values of coils and

capacitors:

L1 =
1

2
[H ]; L3 = − 1

12
[H ]; C2 = 2 [F ]; C4 = −3

2
[F ].

Here we see negative inductances and capacitance. Such elements cannot
be realized using passive electric components. However, they can be realized

with the help of active components, namely operating amplifiers. We can
realize this by negative inpedance converter which was described in previous

subsection.

6.3 Transmission lines circuit

Let us consider the circuit depicted in Fig. 6.3, where Z2k−1(s) and Y2k(s), k =
1, . . . , n, are given impedances of the circuit elements. This structure is known
as a transmission line or a symetrical domino ladder lattice network as well.

The resulting impedance Z(s) of the entire circuit can be expressed as a CFE
described by (6.1) with symetrical distribution of elements, Z2k−1(s) = Z2k(s)

and Y2k−1(s) = Y2k(s), k = 1, . . . , n.
In the case if we assume the same elements in transmision line in series

(Za) and the same in shunt (Zb), we get a structure depicted in Fig. 6.4.
Impedance of such kind of transmision line, which can be used also as a

model of real cable line (solved by O. Heaviside in 1887), can be expressed as

Z(s) =
√

Za.Zb. (6.7)

If we substitute a resistance Za = R and a capacitance Zb = 1/sC, then the

impedance is

Z(s) =

√
R

C
s−1/2 =
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R

C
ω−1/2 e−jπ/4|s=jω. (6.8)
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6.4 Tree structure circuit

Let us consider the total impedance of the fractance circuit as shown in Fig. 6.5,

which has a recursive structure with the combination of two impedances Za

and Zb. Impedance is derived as geometrical mean of Za and Zb,

Z(s) =
√

Za.Zb.

If we substitute a resistance Za = R and a capacitance Zb = 1/sC, then
the impedance shows the fractance characteristics as (see also (6.8))

Z(s) =

√
R

C
s−1/2 =

√
R

C
ω−1/2 e−jπ/4|s=jω,

which is a fractional order integral with absolute value of impedance propor-

tional to ω−1/2 and phase angle is constant −π/4, independent of the frequency.
However, it is impossible to construct such an infinity structure as show in

Fig. 6.5. Therefore, it seems to be important to study the effect of the num-

ber of stage in the recursive self infinity (binary) structure on the impedance
characteristics [31].

A similar tree structure as a fractal model of rough interface between two
materials of very different conductivities, e.g. an electrode and an electrolyte

was studied in [21]. There was described a slightly different structure of tree
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where p and q are the orders of the rational approximation, P and Q are

polynomials of degree p and q, respectively. Block diagram of the analogue
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Figure 7.1: Analogue fractional-order integrator.

realization of fractional-order operator is shown in Fig. 7.1.

7.2 Realization of fractional Iλ controller

7.2.1 Description of circuit

For experimental measurement we built a fractional-order Iλ controller which
is a particular case of the PIλDµ controller, (if Kp = 0 and Td = 0). The con-
troller was realized in three forms, namely by: the symetrical domino ladder or

transmission line (see Fig. 7.2) for n=6, the finite domino ladder (see Fig. 7.3)
for n = 6 and the tree structure (see Fig. 7.4) for n = 4, and Fractances with

impedance ZF were connected to feedback in operational amplifier (Fig. 7.1).
It should be noted that the described methods work for arbitrary orders, but

the circuit elements with computed values are not usually available. Because
of this, in our experiment we proposed and realized the integrator with order
λ = 0.5.

It should be mentioned that this simple case of the controller order can
be realized also using the methods described in [31, 33, 38, 54], which do not

involve explicit rational approximations.
In the case, if we will use identical resistors (R-series) and identical ca-

pacitors (C-shunt) in the fractances, then the behaviour of the circuit will
be as a half-order integrator/differentiator. We used the resistor values R =
1kΩ, (Rj = R, j = 1, . . . , n) and the capacitor values C = 1µF , (Cj = C, j =

1, . . . , n). For better measurement results we used two operational amplifiers
TL081CN in inverting connection.

The resistors R1 and R2 are R1 = R2 = 22kΩ. The integration constant Ti

can be computed from relationship Ti = 1/
√

R/(R2
i ∗ C), and for Ri = 22kΩ

fractance
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we have Ti = 1.4374. The transfer function of the realized analogue fractional-

order Iλ controller is:
C(s) = 1.4374 s−0.5. (7.2)

Adjustment of the integration constant Ti of the fractional-order Iλ con-
troller (or half order integrator) depicted in Fig. 7.1 was done by resistor Ri.
If we change the resistor Ri, the integration constant changes the value in the

required interval.
For measuremets we used frequency 100 Hz and amplitude ±10 V.

7.2.2 Experimental results

Transmission line approximation of the s−0.5

In Fig. 7.5 and Fig. 7.6 - 7.9 the measured characteristics of realized ana-
logue fractional-order Iλ controller, where half order integral was approxi-
mated by transmission line depicted in Fig. 7.2, are presented. It can be seen

from Fig. 7.5 that the realized analogue fractional-order Iλ controller provides
a good approximation in the frequency range [102rad/sec, 5 ·102rad/sec]. (For

comparison see expected Bode plots shown in Fig. 3.2.2.)

CHAPTER 7. REALIZATION OF FRACTIONAL CONTROLLERS 39

0.47µ F

0.47µ F

22k!22k!

0.47µ F

0.47µ F

22k!22k!

0.47µ F

0.47µ F

22k!22k!

0.47µ F

0.47µ F

22k!22k!

0.47µ F

0.47µ F

22k!22k!

0.47µ F

0.47µ F

22k!22k!Z
F
(s)

Figure 7.2: RC transmission line circuit.

1k!1k!

1µF1µF

1k!1k! 1k!

1µF1µF1µF1µF

1k!

1µF

Z
F
(s)

Figure 7.3: RC domino ladder circuit.

we have Ti = 1.4374. The transfer function of the realized analogue fractional-

order Iλ controller is:
C(s) = 1.4374 s−0.5. (7.2)

Adjustment of the integration constant Ti of the fractional-order Iλ con-
troller (or half order integrator) depicted in Fig. 7.1 was done by resistor Ri.
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7.2.2 Experimental results

Transmission line approximation of the s−0.5

In Fig. 7.5 and Fig. 7.6 - 7.9 the measured characteristics of realized ana-
logue fractional-order Iλ controller, where half order integral was approxi-
mated by transmission line depicted in Fig. 7.2, are presented. It can be seen

from Fig. 7.5 that the realized analogue fractional-order Iλ controller provides
a good approximation in the frequency range [102rad/sec, 5 ·102rad/sec]. (For

comparison see expected Bode plots shown in Fig. 3.2.2.)

CHAPTER 7. REALIZATION OF FRACTIONAL CONTROLLERS 40

Z
F
(s)

R

C

1µF

1µF

1k!

1k!

1µF

1µF1µF

1k!

1k!

1k!

1µF

1k!

1k!

1µF

Figure 7.4: RC binary tree circuit.

10
2

10
3

10
4

!90

!80

!70

!60

!50

!40

!30

P
h
a
s
e
 [
d
e
g
]

Frequency [rad/sec]

10
2

10
3

10
4

!40

!35

!30

!25

!20

!15

!10

!5

Frequency [rad/sec]

M
a
g
n
it
u
d
e
 [
d
B

]

Figure 7.5: Bode plots of the I1/2 controller where half order integral was
approximated by transmission line depicted in Fig. 7.2.
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Figure 7.5: Bode plots of the I1/2 controller where half order integral was
approximated by transmission line depicted in Fig. 7.2.

General Approach to Fractances
Sample implementations -- transmission lines -- responses:
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Figure 7.6: Time response of the I1/2 controller to unit-step input where half

order integral was approximated by transmission line depicted in Fig. 7.2.
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Figure 7.7: Time response of the I1/2 controller to sin input where half order

integral was approximated by transmission line depicted in Fig. 7.2.
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Figure 7.8: Time response of the I1/2 controller to saw input where half order

integral was approximated by transmission line depicted in Fig. 7.2.
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Figure 7.9: Time response of the I1/2 controller to ramp input where half order

integral was approximated by transmission line depicted in Fig. 7.2.
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III.1  Commensurate Order Systems

• What is a commensurate order system?

• If one selects the greatest common divisor ! of 
the orders, such that 

• If ! can be found, the commensurate order 
model can easily be written
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An Example

• A fractional order system

• It is obvious that !=1/6, thus the original order 

system can be written as

   where 

For example:

can be written as 
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III.2  Stability of Fractional Order Systems

• The !  curve

–  if             , then the stable

   condition for the system is Unstable

region

with four poles in the stable region


