Numerical methods
of
the fractional calculus

(continued)

Integer-order differentiation

Backward differences

Approximation of the first order derivative:
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All these formulas can be written simultaneously:

h ' fo 1 0 0 0 - 0 fo

h 'V () -1 1 0 0 - 0 fi
h='Vf(ta) 1/ 0 -1 1 0 - 0 f2
: Th| o e :
h='V f(tn_1) 0 -~ 0 -1 1 0 fno1
h= LV f(tn) 0 0 -+ 0 -1 1 In

Integer-order differentiation
Backward differences

Approximation of the second order derivative:
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All these formulas can be written simultaneously, too:
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Integer-order differentiation
Backward differences

Approximation of the first order derivative:
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Integer-order differentiation

Backward differences

Approximation of the second order derivative:
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Generating function:

Bo(z) = h72(1 =22+ 2%) = h72(1 — 2)?

Integer-order differentiation
Backward differences

Approximation of the p-th order derivative:
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Generating function:




Integer-order differentiation
Backward differences

For the generating fun

ctions we have:
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P
Brealz) = Bp(2)Ba(2) = Bu(2)0p(2)

and therefore

B% = B) BL,

BY,

+
BYYY = BR By =DBY BY

Left-sided fractional derivatives
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Integer-order integration
Moving upper limit

One-fold integral: ,
ai(t) = [ s
Approximation: “

k—1
ai(te) =hY_ fir k=1,...,N.
i=0

All these formulas can be written simultaneously:
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Left-sided fractional derivatives
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Integer-order integration
Moving upper limit

Approximation of one-fold integration:
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Generating function:

Integer-order integration
Moving upper limit

Notice that matrix I}, is inverse to the matrix B}, :
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Integer-order integration
Moving upper limit

Two-fold integral: .,
a2(t) = [t [ royie

Approximation:
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Integer-order integration

Moving upper limit
Approximation of the two-fold integration:
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All these formulas can be written simultaneously, too:
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Integer-order integration
Moving upper limit

Approximation of the two-fold integration:
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Generating function:
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Integer-order integration
Moving upper limit

Notice that matrix I3 is inverse to the matrix B :
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Integer-order integration
Moving upper limit
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Approximation:
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Generating function:

pp(z) = hP(1—2)77

Integer-order integration
Moving upper limit

Notice that matrix I% is inverse to the matrix BY;:

BYIY = IR By, «— truncy (Bp(2) pp(2)) =1 «— E

Properties:
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Left-sided fractional integrals
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Initial value problems for FDEs

Discretization of an equation

Consider linear FDE with non-constant coefficients:

m O TERTEL

Zpk(t YDy /) = f(t), 0<a<a<...<qm, n—-1<ay<n

DenOte pi(to) 0 .. 0
o 0 pr(t) 0
P = diag(pe(to) pe(t), o p(t) = | S
00 )

Vv = (ylt0) w0 o(ew)) s Fv = (Flto), S0, S 00)

Then the discrete form of the equation is simply:

m
> P BY Yy = Fy
k=1

Useful matrices: Eliminators

Eliminator, S, ., ., ,is obtained from the unit

matrix by omitting rows with numbers r,72,...,7} .

How do they act:
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Initial value problems for FDEs

Handling zero initial conditions

Ifn—1<an,<n and y®(t) =0, k=0,1,...,n—1,
then the Riemann-Liouville and Caputo derivatives coincide.

Approximating derivatives in the above conditions by
backward differences we immediately have:

y(to) =y(t1) = ... = y(tn—1) = 0.

and the system for finding the rest is:

m

{SU.L....W—I {Z ng)b’{\"”} S{L__m,l} {So,1,.m—1YN} = So1, n-1FN-
k=1

For constant coefficients it is even simpler:

ZPkB\ 2 1801,n—1YN} = So1,..n—1FN.
k=1

Useful matrices: Eliminators

In general,
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Simultaneous multiplication of a triangular strip matrix by an
eliminator Sy . (or Sy—kN—k+1,..n5) on the left and its
transpose on the right preserves the type and the structure of
the triangular strip matrix, and only reduces its size by k+1 rows
and k+1 columns.

Example |: Caputo derivatives

Zero initial conditions

The problem:  y“(t) +y(t) =1, Exact solution is:
y(0) =0, (0)=0 y(t) = t*Eoar1(—t")
m
From > kB, {S01,m—1YN} = So.1,..n-1F N
k=1 m=2a =a,a=0,n=2p =p =1,
By, =B _y. B, = En_a, Fy = (1,1,...,1)"
N
the system for determining y;, k=23,...,N is:

{B{_o+ En—2}{SoaYn} = So1Fn

..and don’t forget to add yo =1 = 0.




Example I: Caputo derivatives

Zero initial conditions

analytical solution
numerical solution (h=0.01
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Example 2: Caputo derivatives

Non-zero initial conditions: transform them to zeros.
The problem: 4@ (t) +y(t) =1,
y(0) =co, ¥'(0)=c1
Exact solution is: y(t) = coBai(—t%) + c1tBas(—t%) +* Ea ot (—t%)
Introduce an auxiliary function:
y(t) = co + et + 2(t)

Then the problem for z(¢) is:

Zm)(t) +2(t) =1—co— et {bounded RHS!

2(0) =0, 2'(0)=0.

Example 3: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.

The problem: YO +y(t) =1,
v 0) =0, ¥ (0) =1
Exact solution is:
y(t) = ot Eaya(—t%) + c1t® ? Eaam1(=t) + 1" Eg a1 (—1°)
Introduce an auxiliary function:
y(t) = cot® ™ + et + 2(t)
Then the problem for z(7) is:

2900) + 2(t) = 1 — ¢t — ¢1t*72 {unbounded RHS!

2(0) =0, 2'(0)=0.

Example 2: Caputo derivatives

Non-zero initial conditions: transform them to zeros.

Solution of the problem y®)(¢) + y(t) = 1,3(0) = 1,5'(0) = -1

analytical solution
numerical solution (h=0.01)

Example 3: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.

Solution of the problem y(1'®) (¢)+-y(t) = 1,508 (0) = 1;5(-02(0) = 1

analytical solution
+  numerical solution (h=0.01
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Nonlinear FDEs

Y @) = f(t, Y1), y @), ...y @),

O<ar<ag<...<a<n.)

Suppose initial conditions are already transformed to
zero initial conditions. Then replacement of
derivatives with their discrete analogues gives:

BY' Yy = f(Btn, B#Yn, B¥YN, ..., BYn),

yj =0, j=12...,n-1,

This is a nonlinear algebraic system.




Physical interpretation of initial conditions for
fractional differential equations with the

Riemann-Liouville fractional derivatives

Spring-pot model

Spring-pot is a linear viscoelastic element whose behaviour is interme-
diate between that of elastic element (spring) and a viscous element
(dashpot). The term “spring-pot” was introduced by Koeller (1984),
although the concept of an element with intermediate properties had
been introduced some time earlier (G. W. Scott Blair, 1930s-40s).
The constitutive equation of a spring-pot is:

o(t) = K oDf'e(t) or e(t) = % oDy Yo (t)

We deal with the Riemann-Liouville derivatives (n— 1 < a < n):

nf T)dr
oDEf() = r(n,lf ) () !(t f(r)?ﬁ"“'

Fractional differential equations in terms of RL derivatives require ini-
tial conditions expressed in terms of initial values of fractional deriva-
tives of the unknown function.

A typical initial value problem (n —1 < a < n):
oDF f(t) + af(t) = h(t); (t>0)

[oDF*F®)], o = brs (k=1,2,...,n).

Spring-pot model: Creep

A stress step o is applied at initial time ¢t = 0. The change of ¢(t) is
described by the FDE

)
Die(t) =
oDfe(t) =

An initial condition involving OD?’le(L) is required. It can be found by
taking the first-order integral of the constitutive equation and letting
t—0

1 1 -
(oD 6(0])%0 = oD} (UO/K)]HO-
In the considered case stress is finite at all times, therefore the re-
quired IC is

oD ()], =0
t—0

K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko (2005):

“A typical feature of differential equations (both classical
and fractional) is the need to specify additional conditions in
order to produce a unique solution. For the case of Caputo
FDEs, these additional conditions are just the static initial
conditions . .., which are akin to those of classical ODEs, and
are therefore familiar to us. In contrast, for Riemann-Liouville
FDEs, these additional conditions constitute certain fractional
derivatives (and/or integrals) of the unknown solution at the
initial point z =0 ..., which are functions of z. These initial
conditions are not physical; furthermore, it is not clear how
such quantities are to be measured from experiment, say, so
that they can be appropriately assigned in an analysis.”

Spring-pot model: Impulse response

An impulse of stress defined as B4&(t) applied to the spring-pot at time
t = 0. After that, the stress remains zero. The strain e(t) for t > 0 is
the solution of FDE

oDPe(t) =0.

An initial condition involving [th ’lc(t)] o is required.

1
This can be found through integration of the constitutive equation,
as
[oDp7re(®)], o= [oDr o (0)/K]
which gives the following initial condition:

[oDp~te(v)]

t—=0"

0= BIK.




The key: look for inseparable twins

In a general case, when we consider some FDE for, say, U(t), we have
to consider also some function V(t), for which some dual relation
exists between U(t) and V(t). For example: stress o(t) and strain
e(t) in viscoelasticity; charge ¢(t) and voltage v(t) in electrical circuits;
temperature difference T'(t) and the heat flux ¢(t) in heat conduction;
etc. Functions U(t) and V(t) are normally related by some basic
physical law for the particular field of science.

In each scientific field there are such pairs of functions like the afore-
mentioned, which are as inseparable as Siamese twins: the left-hand
side of the initial condition involves one of them, whereas the evalu-
ation of the right-hand side is related to the other.

Fractional Voigt model: Creep

A stress step og applied at ¢t = 0. The FDE for the strain e(t) is

Ee(t) + K oDf'e(t) = oo,

and the IC can be found by integrating the constitutive equation and
taking ¢t — O:
—1 - pHa-1 — p-1
[BoDy te()) + K oD re(t) = oDy to®)], -

The limit of the right hand side is zero. A bounded stress can produce
only a bounded strain, so the limit of the first-order ordinary integral
of strain in the left hand side is also zero. Thus the initial condition
has the form:

oDp )], =o0.
t—0

Fractional Voigt model: Impulse response

The constitutive equation of this model is

o(t) = Ee(t) + K oDfe(t).

A stress impulse Bé&(t) is applied to a Voigt element at time ¢t = 0.
Then the FDE for €(t) (t > 0) is

Be(t) + K oD{'e(t) = 0.

We need an initial condition, which will involve the value of OD;"lc(t)
for t — 0. This condition can be obtained by integration of the
constitutive equation as

[EoD e(t) + K oD le(t) = oDy to(®)], -

Fractional Zener model: Impulse response
a(t) +voDffo(t) = Xe(t) + pu oDfe(t).
A stress impulse B4(t) applied at time ¢t = 0. Then the FDE for e(t)
(t>0)is:
Ae(t) + poDfe(t) = 0.
a—1

We need an IC involving the initial value of oDf' 'e(t). Integrating
the constitutive equation and taking ¢ — 0, we, similarly to the Voigt
model under stress impulse, obtain the initial condition in the form:

[noDf ], _o =5

The limit of the right hand side is the magnitude B of the stress
impulse. On physical grounds, the spring-pot cannot deform instan-
taneously under a finite stress, and, as is the case for a spring-pot
alone, any singularity of e(t) must be weaker than that of the stress
impulse, thus

[oDite®)], =0

Hence the initial condition finally takes on the form of

[k OD;**lc(t)]HO =B.

Fractional Zener model: Creep

o(t) = og, and the FDE for «(t) is:
o

Ae(t) + poDf'e(t) = oo + v oo Fa—ay

The initial condition to this equation,

oD tew)|_ =0,
t—0

in terms of fractional derivative of e(t) appeared again from consid-
eration of its “inseparable twin" o(t).




Fractional Zener model: General load

o(t) = 0«(t). The FDE for e(t) is
Ae(t) + poDfe(t) = ox(t) + v oDf o (t)

The corresponding initial condition can be obtained as follows. Con-
sider some small t = a. Starting at ¢t = 0, stress o(¢) must be recorded
until t = a, and based on the recorded values the left hand side of
the integral of the constitutive relationship must be evaluated. The
obtained quantity provides an approximation of the initial value for
the expression in its right hand side.

In some cases it is possible to find the limit of such approximation as
a — 0. For example, for a physically realisable continuous load o« (t)
we obtain a zero initial condition in the form:

[gD?ile(t)]tﬂo =o.




