Numerical methods
of
the fractional calculus
(coninued)

Integer-order differentiation
 Backward differences

Approximation of the first order derivative:

$$
f^{\prime}\left(t_{k}\right) \approx \frac{1}{h} \nabla f\left(t_{k}\right)=\frac{1}{h}\left(f_{k}-f_{k-1}\right), \quad k=1, \ldots, N .
$$

All these formulas can be written simultaneously:

$$
\left[\begin{array}{c}
h^{-1} f_{0} \\
h^{-1} \nabla f\left(t_{1}\right) \\
h^{-1} \nabla f\left(t_{2}\right) \\
\vdots \\
h^{-1} \nabla f\left(t_{N-1}\right) \\
h^{-1} \nabla f\left(t_{N}\right)
\end{array}\right]=\frac{1}{h}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & 0 & \cdots & 0 \\
0 & -1 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\
0 & \cdots & 0 & -1 & 1 & 0 \\
0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{N-1} \\
f_{N}
\end{array}\right]
$$

Integer-order differentiation

Backward differences

Approximation of the first order derivative:

Generating function:

$$
\beta_{1}(z)=h^{-1}(1-z)
$$

Integer-order differentiation
 Backward differences

Approximation of the second order derivative:

$$
f^{\prime \prime}\left(t_{k}\right) \approx \frac{1}{h^{2}} \nabla^{2} f\left(t_{k}\right)=\frac{1}{h^{2}}\left(f_{k}-2 f_{k-1}+f_{k-2}\right), \quad k=2, \ldots, N
$$

All these formulas can be written simultaneously, too:

4

Integer-order differentiation
Backward differences

Approximation of the second order derivative:

$$
B_{N}^{2}=\frac{1}{h^{2}}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & \cdots & 0 \\
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\
\cdots & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & \cdots & 1 & -2 & 1
\end{array}\right]
$$

Generating function:

$$
\beta_{2}(z)=h^{-2}\left(1-2 z+z^{2}\right)=h^{-2}(1-z)^{2}
$$

Integer-order differentiation
Backward differences
Approximation of the p-th order derivative:

Generating function:

$$
\beta_{p}(z)=h^{-p}(1-z)^{p}
$$

\(\left.\begin{array}{rl}Integer-order differentiation

Backward differences\end{array}\right]\)| For the generating functions we have: | |
| ---: | :--- |
| $\beta_{2}(z)$ | $=\beta_{1}(z) \beta_{1}(z)$ |
| $\beta_{p}(z)$ | $=\underbrace{\beta_{1}(z) \ldots \beta_{1}(z)}_{p}$ |
| $\beta_{p+q}(z)$ | $=\beta_{p}(z) \beta_{q}(z)=\beta_{q}(z) \beta_{p}(z)$ |
| B_{N}^{2} | $=B_{p}^{B_{N}^{1} B_{N}^{1},}$ |
| B_{N}^{p} | $=\underbrace{B_{N}^{1} B_{N}^{1} \ldots B_{N}^{1},}_{p}$, |
| B_{N}^{p+q} | $=B_{N}^{B_{N}^{p} B_{N}^{q}=B_{N}^{q} B_{N}^{p}}$ |
| and therefore | |

Left-sided fractional derivatives

$$
\begin{gathered}
{ }_{a} D_{t_{k}}^{\alpha} f(t) \approx \frac{\nabla^{\alpha} f\left(t_{k}\right)}{h^{\alpha}}=h^{-\alpha} \sum_{j=0}^{k}(-1)^{j}\binom{\alpha}{j} f_{k-j}, \quad k=0,1, \ldots, N . \\
{\left[\begin{array}{c}
h^{-\alpha} \nabla^{\alpha} f\left(t_{0}\right) \\
h^{-\alpha} \nabla^{f} f\left(t_{1}\right) \\
h^{-\alpha} \nabla^{\nabla^{\prime}} f\left(t_{2}\right) \\
\vdots \\
h^{-\alpha} \nabla^{\alpha} f\left(t_{N-1}\right) \\
h^{-\alpha} \nabla^{\alpha} f\left(t_{N}\right)
\end{array}\right]=\frac{1}{h^{\alpha}}\left[\begin{array}{cccccc}
\omega_{0}^{(\alpha)} & 0 & 0 & 0 & \ldots & 0 \\
\omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 & 0 & \ldots & 0 \\
\omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 & \ldots & 0 \\
\ddots & \ddots & \ddots & \ddots & \ldots & \ldots \\
\omega_{N-1}^{(\alpha)} & \ddots & \omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 \\
\omega_{N}^{(\alpha)} & \omega_{N-1}^{(\alpha)} & \ddots & \omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)}
\end{array}\right]\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots \\
f_{N-1} \\
f_{N}
\end{array}\right]} \\
\omega_{j}^{(\alpha)}=(-1)^{j}\binom{\alpha}{j} \quad j=0,1, \ldots, N .
\end{gathered}
$$

Left-sided fractional derivatives

$$
\begin{aligned}
& B_{N}^{\alpha}=\frac{1}{h^{\alpha}}\left[\begin{array}{cccccc}
\omega_{0}^{(\alpha)} & 0 & 0 & 0 & \cdots & 0 \\
\omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 & 0 & \cdots & 0 \\
\omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 & \cdots & 0 \\
\ddots & \ddots & \ddots & \ddots & \cdots & \cdots \\
\omega_{N-1}^{(\alpha)} & \ddots & \omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)} & 0 \\
\omega_{N}^{(\alpha)} & \omega_{N-1}^{(\alpha)} & \ddots & \omega_{2}^{(\alpha)} & \omega_{1}^{(\alpha)} & \omega_{0}^{(\alpha)}
\end{array}\right] \\
& \beta_{\alpha}(z)=h^{-\alpha}(1-z)^{\alpha} . \\
& B_{N}^{\alpha} B_{N}^{\beta}=B_{N}^{\beta} B_{N}^{\alpha}=B_{N}^{a+\beta}, \\
& { }_{a} D_{t}^{\alpha}\left({ }_{a} D_{t}^{\beta} f(t)\right)={ }_{a} D_{t}^{\beta}\left({ }_{a} D_{t}^{\alpha} f(t)\right)={ }_{a} D_{t}^{\alpha+\beta} f(t), \\
& f^{(k)}(a)=0, \quad k=1,2, \ldots, r-1, \\
& r=\max \{n, m\}
\end{aligned}
$$

Integer-order integration

Moving upper limit
One-fold integral:

$$
\begin{aligned}
& g_{1}(t)=\int_{a}^{t} f(t) d t \\
& \text { ion: } \\
& g_{1}\left(t_{k}\right) \approx h \sum_{i=0}^{k-1} f_{i}, \quad k=1, \ldots, N .
\end{aligned}
$$

All these formulas can be written simultaneously:
$\left[\begin{array}{c}g_{1}\left(t_{1}\right) \\ g_{1}\left(t_{2}\right) \\ g_{1}\left(t_{3}\right) \\ \vdots \\ g_{1}\left(t_{N}\right) \\ g_{1}\left(t_{N}+h\right)\end{array}\right]=h\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\ 1 & \cdots & 1 & 1 & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 & 1\end{array}\right]\left[\begin{array}{c}f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{N-1} \\ f_{N}\end{array}\right]$

Integer-order integration

Moving upper limit
Approximation of one-fold integration:

$$
I_{N}^{1}=h\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\
1 & \cdots & 1 & 1 & 1 & 0 \\
1 & 1 & \cdots & 1 & 1 & 1
\end{array}\right]
$$

Generating function:

$$
\varphi_{1}(z)=h(1-z)^{-1}
$$

Integer-order integration

Moving upper limit

Notice that matrix I_{N}^{1} is inverse to the matrix B_{N}^{1} :

$$
B_{N}^{1} I_{N}^{1}=I_{N}^{1} B_{N}^{1} \longleftrightarrow \operatorname{trunc}_{N}\left(\beta_{1}(z) \varphi_{1}(z)\right)=1 \longleftrightarrow E .
$$

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & 0 & \cdots & 0 \\
0 & -1 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 1 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]=?
$$

Integer-order integration

Moving upper limit
Two-fold integral:

$$
g_{2}(t)=\int_{a}^{t} d t \int_{a}^{t} f(t) d t
$$

Approximation:

$$
\begin{aligned}
& g_{2}\left(t_{k}\right)=h \sum_{i=0}^{k-1} g_{1}\left(t_{i}\right)=h \sum_{i=1}^{k-1} g_{1}\left(t_{i}\right)=h \sum_{i=1}^{k-1} h \sum_{j=0}^{i-1} f_{j} \\
&= h^{2} \sum_{i=1}^{k-1} \sum_{j=0}^{i-1} f_{j}=h^{2} \sum_{j=0}^{k-2}(k-j-1) f_{j} \\
&= h^{2}\left((k-1) f_{0}+(k-2) f_{1}+\ldots+2 f_{k-3}+f_{k-2}\right) \\
& k=2,3, \ldots, N .
\end{aligned}
$$

Integer-order integration

Moving upper limit
Approximation of the two-fold integration:
$g_{2}\left(t_{k}\right)=h^{2}\left((k-1) f_{0}+(k-2) f_{1}+\ldots+2 f_{k-3}+f_{k-2}\right), \quad k=2,3, \ldots, N$.

All these formulas can be written simultaneously, too:
$\left[\begin{array}{c}g_{2}\left(t_{2}\right) \\ g_{2}\left(t_{3}\right) \\ \vdots \\ g_{2}\left(t_{N}\right) \\ g_{2}\left(t_{N}+h\right) \\ g_{2}\left(t_{N}+2 h\right)\end{array}\right]=h^{2}\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ 2 & 1 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots & \cdots & \cdots \\ \cdots & 3 & 2 & 1 & 0 & 0 \\ N & \cdots & 3 & 2 & 1 & 0 \\ N+1 & N & \cdots & 3 & 2 & 1\end{array}\right]\left[\begin{array}{c}f_{0} \\ f_{1} \\ \vdots \\ f_{N-2} \\ f_{N-1} \\ f_{N}\end{array}\right]$

Integer-order integration
 Moving upper limit

Approximation of the two-fold integration:

$$
I_{N}^{2}=h^{2}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
2 & 1 & 0 & 0 & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots & \cdots & \cdots \\
\cdots & 3 & 2 & 1 & 0 & 0 \\
N & \cdots & 3 & 2 & 1 & 0 \\
N+1 & N & \cdots & 3 & 2 & 1
\end{array}\right]
$$

Generating function:

$$
\varphi_{2}(z)=h^{2}(1-z)^{-2}
$$

Integer-order integration

Moving upper limit

Notice that matrix I_{N}^{2} is inverse to the matrix B_{N}^{2} :
$B_{N}^{2} I_{N}^{2}=I_{N}^{2} B_{N}^{2} \longleftrightarrow \operatorname{trunc}_{N}\left(\beta_{2}(z) \varphi_{2}(z)\right)=1 \longleftrightarrow E$.
$\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ -2 & 1 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & \cdots & 1 & -2 & 1\end{array}\right]\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \cdots & 0 \\ 2 & 1 & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots & \cdots & \cdots \\ N & 3 & 2 & 1 & 0 & 0 \\ N+1 & N & \cdots & 2 & 1 & 0 \\ 2 & \cdots & 1\end{array}\right]=$?

Integer-order integration
Moving upper limit
p-fold integration: $\quad g_{p}(t)=\int_{a}^{t} d \tau_{p} \int_{a}^{\tau_{p}} d \tau_{p-1} \ldots \int_{a}^{\tau_{2}} f\left(\tau_{1}\right) d \tau_{1}$
Approximation:

Generating function:

$$
\varphi_{p}(z)=h^{p}(1-z)^{-p}
$$

Integer-order integration

Moving upper limit

Notice that matrix I_{N}^{p} is inverse to the matrix B_{N}^{p} :

$$
B_{N}^{p} I_{N}^{p}=I_{N}^{p} B_{N}^{p} \longleftrightarrow \operatorname{trunc}_{N}\left(\beta_{p}(z) \varphi_{p}(z)\right)=1 \longleftrightarrow E
$$

Properties:

$$
\begin{aligned}
I_{N}^{2} & =I_{N}^{1} I_{N}^{1}, \\
I_{N}^{p} & =\underbrace{I_{N}^{1} I_{N}^{1} \ldots I_{N}^{1}}_{p}, \\
I_{N}^{p+q} & =I_{N}^{p} I_{N}^{q}=I_{N}^{q} I_{N}^{p}
\end{aligned}
$$

Matrices I_{N}^{p} commute with matrices B_{N}^{p}.

$$
\begin{gathered}
\text { Left-sided fractional integrals } \\
\qquad{ }_{a} D_{t}^{-\alpha} f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-\tau)^{\alpha-1} f(\tau) d \tau, \quad(a<t<b), \\
I_{N}^{\alpha}=\left(B_{N}^{\alpha}\right)^{-1} . \\
I_{N}^{\alpha} \longleftrightarrow \varphi_{N}(z)=\operatorname{trunc}_{N}\left(\beta_{\alpha}^{-1}(z)\right)=\operatorname{trunc}_{N}\left(h^{\alpha}(1-z)^{-\alpha}\right) . \\
I_{N}^{\alpha}=h^{\alpha}\left[\begin{array}{cccccc}
\omega_{0}^{(-\alpha)} & 0 & 0 & 0 & \cdots & 0 \\
\omega_{1}^{(1-\alpha)} & \omega_{0}^{(-\alpha)} & 0 & 0 & \cdots & 0 \\
\omega_{2}^{(1-\alpha)} & \omega_{1}^{(1-\alpha)} & \omega_{0}^{(-\alpha)} & 0 & \cdots & 0 \\
\ddots & \ddots & \ddots & \ddots & \cdots & \cdots \\
\omega_{N-1}^{(-\alpha)} & \ddots & \omega_{2}^{(-\alpha)} & \omega_{1}^{(-\alpha)} & \omega_{0}^{(-\alpha)} & 0 \\
\omega_{N}^{(-\alpha)} & \omega_{N-1}^{(-\alpha)} & \ddots & \omega_{2}^{(-\alpha)} & \omega_{1}^{(1-\alpha)} & \omega_{0}^{(-\alpha)}
\end{array}\right]
\end{gathered}
$$

Useful matrices: Eliminators

Eliminator, $S_{r_{1}, r_{2}, \ldots, r_{k}}$, is obtained from the unit matrix by omitting rows with numbers $r_{1}, r_{2}, \ldots, r_{k}$.

How do they act:

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] ; \quad S_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] ;
$$

$S_{1} A=\left[\begin{array}{ccc}a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] ; \quad A S_{1}^{T}=\left[\begin{array}{cc}a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right] ; \quad S_{1} A S_{1}^{T}=\left[\begin{array}{cc}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]$

Useful matrices: Eliminators

In general,

$$
\begin{aligned}
& S_{0}\left\{\begin{array}{l}
L_{N} \\
U_{N}
\end{array}\right\} S_{0}^{T}=\left\{\begin{array}{l}
L_{N-1} \\
U_{N-1}
\end{array}\right\}, \\
& S_{N}\left\{\begin{array}{l}
L_{N} \\
U_{N}
\end{array}\right\} S_{N}^{T}=\left\{\begin{array}{l}
L_{N-1} \\
U_{N-1}
\end{array}\right\}, \\
& S_{0,1, \ldots, k}\left\{\begin{array}{l}
L_{N} \\
U_{N}
\end{array}\right\} S_{0,1, \ldots, k}^{T}=\left\{\begin{array}{l}
L_{N-k-1} \\
U_{N-k-1}
\end{array}\right\}, \\
& S_{N-k, N-k+1, \ldots, N}\left\{\begin{array}{l}
L_{N} \\
U_{N}
\end{array}\right\} S_{N-k, N-k+1, \ldots, N}^{T}=\left\{\begin{array}{l}
L_{N-k-1}^{T} \\
U_{N-k-1}
\end{array}\right\} .
\end{aligned}
$$

Simultaneous multiplication of a triangular strip matrix by an eliminator $S_{0,1, \ldots k}$ (or $S_{N-k, N-k+1, \ldots, N}$) on the left and its transpose on the right preserves the type and the structure of the triangular strip matrix, and only reduces its size by $k+1$ rows and $k+1$ columns.

Consider linear FDE with non-constant coefficients:

$$
\sum_{k=1}^{m} p_{k}(t) D^{\alpha_{k}} y(t)=f(t),
$$

$$
\begin{aligned}
& \text { Denote } \\
& \qquad \begin{array}{l}
P_{N}^{(k)}=\operatorname{diag}\left(p_{k}\left(t_{0}\right), p_{k}\left(t_{1}\right), \ldots, p_{k}\left(t_{N}\right)\right)
\end{array}=\left[\begin{array}{llll}
p_{k}\left(t_{0}\right) & 0 & \ldots & 0 \\
0 & p_{k}\left(t_{1}\right) & 0 & \ldots \\
0 & \ldots & \ddots & 0 \\
0 & \cdots & 0 & p_{k}\left(t_{N}\right)
\end{array}\right] \\
& Y_{N}=\left(y\left(t_{0}\right), y\left(t_{1}\right), \ldots, y\left(t_{N}\right)\right)^{T}, \quad F_{N}=\left(f\left(t_{0}\right), f\left(t_{1}\right), \ldots, f\left(t_{N}\right)\right)^{T} .
\end{aligned}
$$

Then the discrete form of the equation is simply:

$$
\sum_{k=1}^{m} P_{N}^{(k)} B_{N}^{\alpha_{k}} Y_{N}=F_{N}
$$

Initial value problems for FDEs
 Handling zero initial conditions

If $n-1<\alpha_{m}<n$: and $y^{(k)}\left(t_{0}\right)=0, \quad k=0,1, \ldots, n-1$, then the Riemann-Liouville and Caputo derivatives coincide.

Approximating derivatives in the above conditions by backward differences we immediately have:

$$
y\left(t_{0}\right)=y\left(t_{1}\right)=\ldots=y\left(t_{n-1}\right)=0 .
$$

and the system for finding the rest is:
$\left\{S_{0,1, \ldots, n-1}\left\{\sum_{k=1}^{m} P_{N}^{(k)} B_{N}^{\alpha_{k}}\right\} S_{0,1, \ldots, n-1}^{T}\right\}\left\{S_{0,1, \ldots, n-1} Y_{N}\right\}=S_{0,1, \ldots, n-1} F_{N}$.
For constant coefficients it is even simpler:

$$
\sum_{k=1}^{m} p_{k} B_{N-n}^{\alpha_{k}}\left\{S_{0,1, \ldots, n-1} Y_{N}\right\}=S_{0,1, \ldots, n-1} F_{N} .
$$

Example I:Caputo derivatives

Zero initial conditions

The problem: $\quad y^{(\alpha)}(t)+y(t)=1$,	Exact solution is:

$$
\begin{array}{l|l}
y(0)=0, \quad y^{\prime}(0)=0 & y(t)=t^{\alpha} E_{\alpha, \alpha+1}\left(-t^{\alpha}\right)
\end{array}
$$

From

$$
\begin{aligned}
& \sum_{k=1}^{m} p_{k} B_{N-n}^{\alpha_{k}}\left\{S_{0,1, \ldots, n-1} Y_{N}\right\}=S_{0,1, \ldots, n-1} F_{N} . \\
& m=2, \alpha_{1}=\alpha, \alpha_{2}=0, n=2, p_{1}=p_{2}=1, \\
& B_{N-n}^{\alpha_{1}}=B_{N-2}^{\alpha}, B_{N-n}^{\alpha_{2}}=E_{N-2}, F_{N}=(\underbrace{1,1, \ldots,)^{T}}_{N})^{T}
\end{aligned}
$$

the system for determining $y_{k}, k^{* *}=2,3, \ldots, N$ is:

$$
\left\{B_{N-2}^{\alpha}+E_{N-2}\right\}\left\{S_{0,1} Y_{N}\right\}=S_{0,1} F_{N}
$$

... and don't forget to add $y_{0}=y_{1}=0$.

Example I: Caputo derivatives
 Zero initial conditions

Solution of the problem $y^{(1.8)}(t)+y(t)=1, y(0)=0, y^{\prime}(0)=0$

Example 2: Caputo derivatives

Non-zero initial conditions: transform them to zeros.
The problem: $\quad y^{(\alpha)}(t)+y(t)=1$,

$$
y(0)=c_{0}, \quad y^{\prime}(0)=c_{1}
$$

Exact solution is: $y(t)=c_{0} E_{\alpha, 1}\left(-t^{\alpha}\right)+c_{1} t E_{\alpha, 2}\left(-t^{\alpha}\right)+t^{\alpha} E_{\alpha, \alpha+1}\left(-t^{\alpha}\right)$ Introduce an auxiliary function:

$$
y(t)=c_{0}+c_{1} t+z(t)
$$

Then the problem for $z(t)$ is:

$$
\begin{gathered}
z^{(\alpha)}(t)+z(t)=1-c_{0}-c_{1} t \\
z(0)=0, \quad z^{\prime}(0)=0
\end{gathered}
$$

bounded RHS

Example 2: Caputo derivatives
 Non-zero initial conditions: transform them to zeros.

Solution of the problem $y^{(1.8)}(t)+y(t)=1, y(0)=1, y^{\prime}(0)=-1$

Example 3: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.
The problem:

$$
\begin{gathered}
y^{(\alpha)}(t)+y(t)=1, \\
y^{(\alpha-1)}(0)=c_{0}, \quad y^{(\alpha-2)}(0)=c_{1} .
\end{gathered}
$$

Exact solution is:

$$
y(t)=c_{0} t^{\alpha-1} E_{\alpha, \alpha}\left(-t^{\alpha}\right)+c_{1} t^{\alpha-2} E_{\alpha, \alpha-1}\left(-t^{\alpha}\right)+t^{\alpha} E_{\alpha, \alpha+1}\left(-t^{\alpha}\right)
$$

Introduce an auxiliary function:

$$
y(t)=c_{0} t^{\alpha-1}+c_{1} t^{\alpha-2}+z(t)
$$

Then the problem for $z(t)$ is:

$$
\begin{gathered}
z^{(\alpha)}(t)+z(t)=1-c_{0} t^{\alpha-1}-c_{1} t^{\alpha-2} \\
z(0)=0, \quad z^{\prime}(0)=0
\end{gathered}
$$

Example 3: Riemann-Liouville derivatives
Non-zero initial conditions: transform them to zeros.

Solution of the problem $y^{(1.8)}(t)+y(t)=1 ; y^{(0.8)}(0)=1 ; y^{(-0.2)}(0)=-1$

Nonlinear FDEs

$\left\{\begin{array}{l}y^{\left(\overline{\alpha_{i}}\right)}(t)={ }_{a} D_{t}^{\alpha_{i}} y(t)\end{array}\right.$

$$
\begin{aligned}
y^{\left(\alpha_{1}\right)}(t) & =f\left(t, y^{\left(\alpha_{2}\right)}(t), y^{\left(\alpha_{3}\right)}(t), \ldots, y^{\left(\alpha_{k}\right)}(t)\right) \\
& \left(0<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{k} \leq n .\right)
\end{aligned}
$$

Suppose initial conditions are already transformed to zero initial conditions. Then replacement of derivatives with their discrete analogues gives:

$$
\begin{gathered}
B_{N}^{\alpha_{1}} Y_{N}=f\left(E t_{N}, B_{N}^{\alpha_{2}} Y_{N}, B_{N}^{\alpha_{3}} Y_{N}, \ldots, B_{N}^{\alpha_{k}} Y_{N}\right) \\
y_{j}=0, \quad j=1,2, \ldots, n-1,
\end{gathered}
$$

This is a nonlinear algebraic system.

Physical interpretation of initial conditions for fractional differential equations with the Riemann-Liouville fractional derivatives

We deal with the Riemann-Liouville derivatives ($n-1 \leq \alpha<n$):

$$
{ }_{0} D_{t}^{\alpha} f(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{f(\tau) d \tau}{(t-\tau)^{\alpha-n+1}} .
$$

Fractional differential equations in terms of RL derivatives require ini tial conditions expressed in terms of initial values of fractional derivatives of the unknown function.

A typical initial value problem $(n-1<\alpha<n)$:

$$
\begin{aligned}
{ }_{0} D_{t}^{\alpha} f(t)+a f(t)=h(t) ; & (t>0) \\
{\left[{ }_{0} D_{t}^{\alpha-k} f(t)\right]_{t \rightarrow 0}=b_{k}, } & (k=1,2, \ldots, n) .
\end{aligned}
$$

K. Diethelm, N. J. Ford, A. D. Freed, and Yu. Luchko (2005):
"A typical feature of differential equations (both classical and fractional) is the need to specify additional conditions in order to produce a unique solution. For the case of Caputo FDEs, these additional conditions are just the static initial conditions, which are akin to those of classical ODEs, and are therefore familiar to us. In contrast, for Riemann-Liouville FDEs, these additional conditions constitute certain fractional derivatives (and/or integrals) of the unknown solution at the initial point $x=0 \ldots$, which are functions of x. These initial conditions are not physical; furthermore, it is not clear how such quantities are to be measured from experiment, say, so that they can be appropriately assigned in an analysis."

Spring-pot model

Spring-pot is a linear viscoelastic element whose behaviour is interme diate between that of elastic element (spring) and a viscous element (dashpot). The term "spring-pot" was introduced by Koeller (1984) although the concept of an element with intermediate properties had been introduced some time earlier (G. W. Scott Blair, 1930s-40s). The constitutive equation of a spring-pot is:

$$
\sigma(t)=K_{0} D_{t}^{\alpha} \epsilon(t) \quad \text { or } \quad \epsilon(t)=\frac{1}{K}{ }_{0} D_{t}^{-\alpha} \sigma(t)
$$

Spring-pot model: Creep

A stress step σ_{0} is applied at initial time $t=0$. The change of $\epsilon(t)$ is described by the FDE

$$
{ }_{0} D_{t}^{\alpha} \epsilon(t)=\frac{\sigma_{0}}{K}
$$

An initial condition involving ${ }_{0} D_{t}^{\alpha-1} \epsilon(t)$ is required. It can be found by taking the first-order integral of the constitutive equation and letting $t \rightarrow 0$

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=\left[{ }_{0} D_{t}^{-1}\left(\sigma_{0} / K\right)\right]_{t \rightarrow 0}
$$

In the considered case stress is finite at all times, therefore the required IC is

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=0
$$

Spring-pot model: Impulse response

An impulse of stress defined as $B \delta(t)$ applied to the spring-pot at time $=0$. After that, the stress remains zero. The strain $\epsilon(t)$ for $t>0$ is the solution of FDE

$$
{ }_{0} D_{t}^{\alpha} \epsilon(t)=0 .
$$

An initial condition involving $\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}$ is required.
This can be found through integration of the constitutive equation, as

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=\left[{ }_{0} D_{t}^{-1} \sigma(t) / K\right]_{t \rightarrow 0},
$$

which gives the following initial condition:

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=B / K .
$$

The key: look for inseparable twins
In a general case, when we consider some FDE for, say, $U(t)$, we have to consider also some function $V(t)$, for which some dual relation exists between $U(t)$ and $V(t)$. For example: stress $\sigma(t)$ and strain $\epsilon(t)$ in viscoelasticity; charge $q(t)$ and voltage $v(t)$ in electrical circuits; temperature difference $T(t)$ and the heat flux $q(t)$ in heat conduction etc. Functions $U(t)$ and $V(t)$ are normally related by some basic physical law for the particular field of science.

In each scientific field there are such pairs of functions like the afore mentioned, which are as inseparable as Siamese twins: the left-hand side of the initial condition involves one of them, whereas the evalu ation of the right-hand side is related to the other

Fractional Voigt model: Creep

A stress step σ_{0} applied at $t=0$. The FDE for the strain $\epsilon(t)$ is

$$
E \epsilon(t)+K_{0} D_{t}^{\alpha} \epsilon(t)=\sigma_{0},
$$

nd the IC can be found by integrating the constitutive equation and aking $t \rightarrow 0$

$$
\left[E{ }_{0} D_{t}^{-1} \epsilon(t)+K_{0} D_{t}^{\alpha-1} \epsilon(t)={ }_{0} D_{t}^{-1} \sigma(t)\right]_{t \rightarrow 0} .
$$

The limit of the right hand side is zero. A bounded stress can produce only a bounded strain, so the limit of the first-order ordinary integral of strain in the left hand side is also zero. Thus the initial condition as the form

$$
\left[0 D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=0 .
$$

Fractional Voigt model: Impulse response

The constitutive equation of this model is

$$
\sigma(t)=E \epsilon(t)+K_{0} D_{t}^{\alpha} \epsilon(t) .
$$

A stress impulse $B \delta(t)$ is applied to a Voigt element at time $t=0$. Then the FDE for $\epsilon(t)(t>0)$ is

$$
E \epsilon(t)+K_{0} D_{t}^{\alpha} \epsilon(t)=0 .
$$

We need an initial condition, which will involve the value of ${ }_{0} D_{t}^{\alpha-1} \epsilon(t)$ for $t \rightarrow 0$. This condition can be obtained by integration of the constitutive equation as

$$
\left[E_{0} D_{t}^{-1} \epsilon(t)+K_{0} D_{t}^{\alpha-1} \epsilon(t)={ }_{0} D_{t}^{-1} \sigma(t)\right]_{t \rightarrow 0}
$$

The limit of the right hand side is the magnitude B of the stress mpulse. On physical grounds, the spring-pot cannot deform instantaneously under a finite stress, and, as is the case for a spring-pot alone, any singularity of $\epsilon(t)$ must be weaker than that of the stress impulse, thus

$$
\left[0 D_{t}^{-1} \epsilon(t)\right]_{t \rightarrow 0}=0
$$

Hence the initial condition finally takes on the form of

$$
\left[K_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=B
$$

Fractional Zener model: Impulse response

$$
\sigma(t)+\nu_{0} D_{t}^{\alpha} \sigma(t)=\lambda \epsilon(t)+\mu_{0} D_{t}^{\alpha} \epsilon(t) .
$$

A stress impulse $B \delta(t)$ applied at time $t=0$. Then the FDE for $\epsilon(t)$ $(t>0)$ is:

$$
\lambda \epsilon(t)+\mu_{0} D_{t}^{\alpha} \epsilon(t)=0 .
$$

We need an IC involving the initial value of ${ }_{0} D_{t}^{\alpha-1} \epsilon(t)$. Integrating the constitutive equation and taking $t \rightarrow 0$, we, similarly to the Voigt model under stress impulse, obtain the initial condition in the form:

$$
\left[\mu_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=B
$$

Fractional Zener model: Creep

$\sigma(t)=\sigma_{0}$, and the FDE for $\epsilon(t)$ is:

$$
\lambda \epsilon(t)+\mu_{0} D_{t}^{\alpha} \epsilon(t)=\sigma_{0}+\nu \sigma_{0} \frac{t^{-\alpha}}{\Gamma(1-\alpha)} .
$$

The initial condition to this equation,

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=0
$$

in terms of fractional derivative of $\epsilon(t)$ appeared again from consideration of its "inseparable twin" $\sigma(t)$.

Fractional Zener model: General Ioad

$\sigma(t)=\sigma_{*}(t)$. The FDE for $\epsilon(t)$ is

$$
\lambda \epsilon(t)+\mu_{0} D_{t}^{\alpha} \epsilon(t)=\sigma_{*}(t)+\nu_{0} D_{t}^{\alpha} \sigma_{*}(t)
$$

The corresponding initial condition can be obtained as follows. Conider some small $t=a$. Starting at $t=0$, stress $\sigma(t)$ must be recorded until $t=a$, and based on the recorded values the left hand side of the integral of the constitutive relationship must be evaluated. The obtained quantity provides an approximation of the initial value for the expression in its right hand side.
In some cases it is possible to find the limit of such approximation as $a \rightarrow 0$. For example, for a physically realisable continuous load $\sigma_{*}(t)$ we obtain a zero initial condition in the form:

$$
\left[{ }_{0} D_{t}^{\alpha-1} \epsilon(t)\right]_{t \rightarrow 0}=0 .
$$

