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George Green 
(14 July 1793 – 31 May 1841)

In 1828 Green privately published "An Essay on the Application of Mathematical Analysis to the 
Theories of Electricity and Magnetism". The essay introduced several important concepts, among 
them a theorem similar to modern Green's theorem, the idea of potential functions as currently 
used in physics, and the concept of what are now called Green's functions. It gained him admittance 
to Cambridge as an undergraduate in 1833. He graduated in 1837 and was elected to a fellowship in 
1839, two years before his death. The fellowship was for bachelors; Green qualified because he had 
never formally married the mother of his six children. No portrait of Green was ever made...

Green’s function 
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Classical case (recall)

Linear differential equation of integer order n:

Structure of solution:

y(t) = yH(t) + yf (t)

yf (t) =
b∫

a

G(t, τ)f(τ)dτ

n∑

k=0

pk(t)y(k)(t) = f(t), t ∈ [a, b]
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Green’s function 
Classical case (recall)

G(t, τ)Definition of           :

1.   Partial derivatives                
     exist and are continuous with respect to 
     both variables in triangles 
     and                     . 

2.   As function of t,             satisfies equation

a ≤ t ≤ τ ≤ b

a ≤ τ ≤ t ≤ b

G(k)
t (t, τ), (k = 0, . . . , n)

G(t, τ)
n∑

k=0

pk(t)y(k)(t) = 0
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Green’s function 
Classical case (recall)

3.              and its derivatives 
      are continuous in the square 
      with respect to both variables,

4.    For 

       [ jump of (n-1)-th derivative ]                 

G(t, τ) G(k)
t (t, τ), (k = 0, . . . , n− 2)

a ≤ t, τ ≤ t

a < τ < t

G(n−1)
t (τ + 0, τ)−G(n−1)

t (τ − 0, τ) =
1

pn(τ)

5

Green’s function 
Classical case (recall)

{
y′(t) = f(t), t ∈ [0, T ]
y(0) = 0

Consider the simplest example:

The solution is:

τt

G(t, τ) =
{

1, 0 ≤ τ ≤ t
0 t < τ ≤ T

= H(t− τ)

Heaviside function

y(t) =
t∫

0

f(τ)dτ =
T∫

0

G(t, τ)f(τ)dτ,
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Green’s function 
Classical case (recall)

{
y′(t) = f(t), t ∈ [0, T ]
y(0) = 0

The LT can be used to obtain Green’s function:

Consider the same equation with delta function in RHS:

G′(t) = δ(t)

s g(s) = 1 g(s) =
1
s

G(t) = H(t) =
{

1, t ≥ 0
0, t < 0

Heavisidey(t) =
T∫

0

G(t− τ)f(τ)dτ
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Fractional Green’s function 
Initial value problem for a linear FODE

where
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Fractional Green’s function 
Definition

Leopold Kronecker
(1823-1891)

Kronecker believed that mathematics should deal only with 
finite numbers and with a finite number of operations.
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Fractional Green’s function 
Main property

Solution of the problem

is given by 

y(t) =
t∫

0

G(t, τ)f(τ)dτ,
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Fractional Green’s function 
Main property (1)

Indeed, consider
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Fractional Green’s function 
Main property (2)

and similarly up to 
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Fractional Green’s function 
Main property (n)

But:

Therefore, 



Fractional Green’s function 
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Constructing solutions of equations with zero RHS 

Motivation: consider an integer order example:

G′′(t) + a2G(t) = δ(t)

g(s)(s2 + a2) = 1 g(s) =
1

s2 + a2

G(t) =
1
a

sin at
G(0)(t)G(1)(t)

ψ1(t) = cos at

ψ1(0) = 1

ψ′
1(0) = 0

ψ2(t) =
1
a

sin at

ψ2(0) = 0

ψ′
2(0) = 1
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Fractional Green’s function 
Constructing solutions of equations with zero RHS 

Motivation: consider an integer order example:

y′′(t) + a2y(t) = f(t)

Solutions:

y(0) = b1

y′(0) = b2

y(t) = b1ψ1(t) + b2ψ2(t) +
t∫

0

G(t− τ)f(τ)dτ

= b1G
′(t) + b2G(t) +

t∫

0

G(t− τ)f(τ)dτ

15

Fractional Green’s function 
Constructing solutions of equations with zero RHS 

Consider the case of constant coefficients. Then 

Take                         ,                    Then

due to zero initial conditions 
(definition of FGF)

Also, 
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Fractional Green’s function 
Constructing solutions of linear equations with constant coefficients 
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Fractional Green’s function 
One-term equation

g1(s) =
1

asα
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Fractional Green’s function 
Two-term equation

g2(s) =
1

asα + b
=

1
a

1
sα + b

a



19

Fractional Green’s function 
Three-term equation

g3(s) =
1

asβ + bsα + c
=

1
c

cs−α

asβ−α + b

1
1 + cs−α

asβ−α+b

=
1
c

∞∑

k=0

(−1)k
( c

a

)k+1 s−αk−α

(
sβ−α + b

a

)k+1
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Fractional Green’s function 
Four-term equation
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Fractional Green’s function 
Four-term equation
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Fractional Green’s function 
General case: n-term equation

multinomial coefficients

Power series method

Brook Taylor
(1685 - 1731)

Taylor's expansion:

• invented integration by parts

Also:

• calculus of finite differences

• a change of variables formula

• a way of relating the derivative 
of a function to the derivative of 
the inverse function

Methodus incrementorum directa et inversa (1715)

In 1712 Taylor was appointed to the committee set up to adjudicate on whether 
the claim of Newton or of Leibniz to have invented the calculus was correct.

Power series method
One term equation:  zero initial condition

Assume that the RHS can be expanded in Taylor series 
that converges for                : 0 ≤ t ≤ R

Knowing                               , we can look for the 
solution in the form:



Power series method
One term equation:  zero initial condition

Zero initial conditions are satisfied; consider the equation: 

Comparison of the coefficients gives:

Therefore, 

Power series method
One term equation:  zero initial condition

In the considered simple case we have:

Power series method
One term equation:  weak singularity in the RHS

Suppose

Look for the solution in the form:

α + β > 0and

Then the coefficients in the solution are:
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Power series method
One term equation:  non-zero initial condition

The solution exists only if 

Suppose                                      (coeffs. are known)

and look for the solution in the form
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Power series method
One term equation:  non-zero initial condition

Consider the equation: 

Comparison of the coefficients gives:
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Power series method
One term equation:  initial condition in terms of R-L integral

Suppose that the RHS can be expanded in Taylor series:

We can look for the solution in the form:
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Power series method
One term equation:  initial condition in terms of R-L integral

Consider the equation: 

Comparison of the coefficients gives:

Still have to determine 
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Power series method
One term equation:  initial condition in terms of R-L integral

To determine     , the initial condition must be used.

Taking the limit as           we obtain:t→ 0
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Power series method

• Examine the initial conditions and the RHS

• Initial conditions and the RHS of the 
equation determine the class of solutions 
and dictate the form of the series

• The key formula is 
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Power series method
Equation with non-constant coefficients

Consider the following problem:

For some particular types of         a solution can be 
obtained.  Suppose 

Then the solution can have the form:

f(t)

35

Power series method
Equation with non-constant coefficients

Initial condition is satisfied by the chosen form of solution.

The the comparison of the coefficients gives:

recurrence
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Power series method
Equation with non-constant coefficients: particular case

Take, for example, 

Then
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Power series method
Equation with non-constant coefficients: even more particular case

If we take 

then
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Power series method
Two-term nonlinear equation

Consider the following problem:

The solution can have the form:

(because              and              both give the series of 
the same form)
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Power series method
Two-term nonlinear equation

Initial condition is satisfied; use the equation: 

and we obtain the recurrence relationships: 


