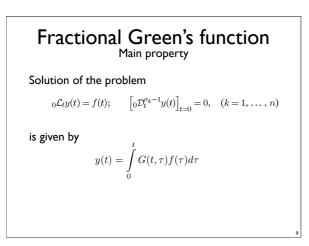
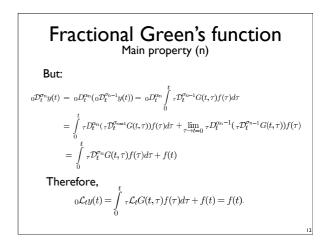
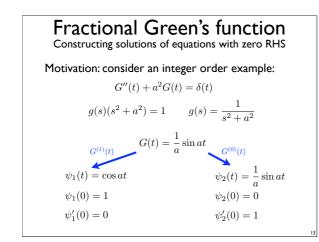


Fractional Green's function Main property (2) ${}_{0}\mathcal{D}_{t}^{\sigma_{2}}y(t) = {}_{0}D_{t}^{\alpha_{2}}({}_{0}D_{t}^{\alpha_{1}}y(t)) = {}_{0}D_{t}^{\alpha_{2}}\int_{0}^{t}{}_{\tau}D_{t}^{\alpha_{1}}G(t,\tau)f(\tau)d\tau$ $= {}_{0}^{t}{}_{\tau}D_{t}^{\alpha_{2}}({}_{\tau}D_{t}^{\alpha_{1}}G(t,\tau))f(\tau)d\tau$ $+ {}_{\tau \to t=0}{}_{\tau}D_{t}^{\alpha_{2}-1}({}_{\tau}D_{t}^{\alpha_{1}}G(t,\tau))f(\tau)$ $= {}_{0}^{t}{}_{\tau}D_{t}^{\sigma_{2}}G(t,\tau)f(\tau)d\tau$ and similarly up to ${}_{0}D_{t}^{\sigma_{n-1}}y(t) = {}_{0}^{t}{}_{\tau}D_{t}^{\sigma_{n-1}}G(t,\tau)f(\tau)d\tau$







Exact ional Green's function
Constructing solutions of linear equations with constant coefficients

$$y(t) = \sum_{k=1}^{n} b_k \psi_k(t) + \int_0^t G(t-\tau) f(\tau) d\tau,$$

$$b_k = \left[a \mathcal{D}_t^{\sigma_k - 1} y(t) \right]_{t=0}$$

$$\psi_k(t) = a \mathcal{D}_t^{\sigma_n - \sigma_k} G(t), \qquad a \mathcal{D}_t^{\sigma_n - \sigma_k} \equiv a \mathcal{D}_t^{\alpha_n} a \mathcal{D}_t^{\alpha_{n-1}} \cdots a \mathcal{D}_t^{\alpha_{k+1}}$$

Fractional Green's function
Constructing solutions of equations with zero RHS
Motivation: consider an integer order example:

$$y''(t) + a^{2}y(t) = f(t)$$

$$y(0) = b_{1}$$

$$y'(0) = b_{2}$$
Solutions:

$$y(t) = b_{1}\psi_{1}(t) + b_{2}\psi_{2}(t) + \int_{0}^{t} G(t - \tau)f(\tau)d\tau$$

$$= b_{1}G'(t) + b_{2}G(t) + \int_{0}^{t} G(t - \tau)f(\tau)d\tau$$

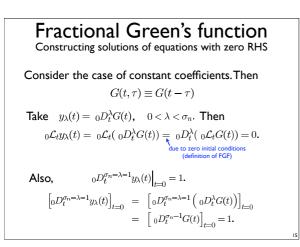
Fractional Green's function
One-term equation

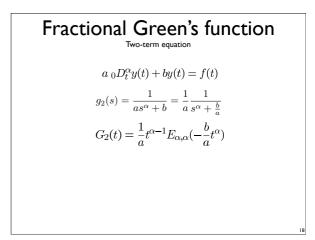
$$a_{0}D_{t}^{\alpha}y(t) = f(t)$$

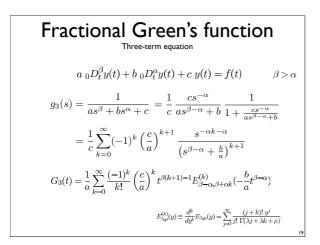
$$g_{1}(s) = \frac{1}{as^{\alpha}}$$

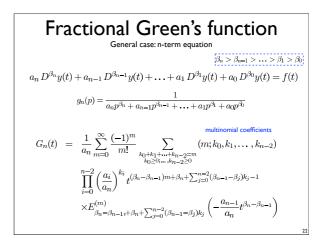
$$G_{1}(t) = \frac{1}{a} \frac{t^{\alpha-1}}{\Gamma(\alpha)}$$

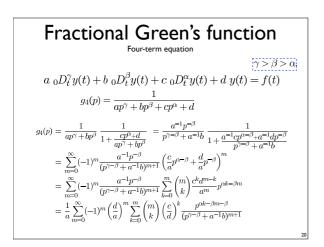
$$y(t) = \frac{1}{a\Gamma(\alpha)} \int_{0}^{t} \frac{f(\tau)d\tau}{(t-\tau)^{1-\alpha}} = \frac{1}{a} {}_{0}D_{t}^{-\alpha}f(t)$$
17

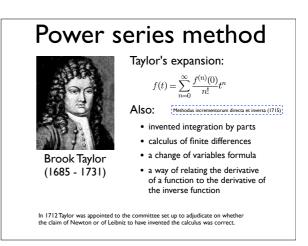


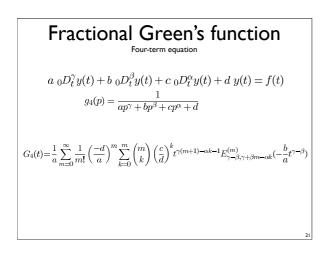


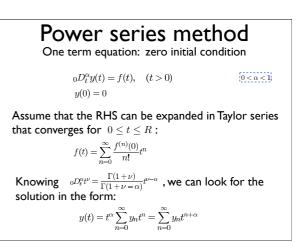


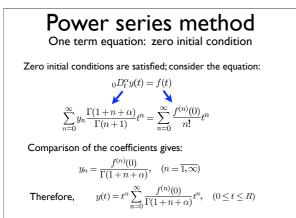


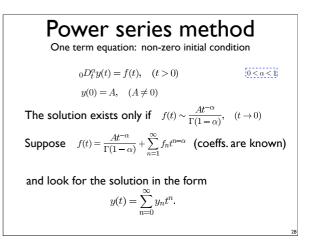


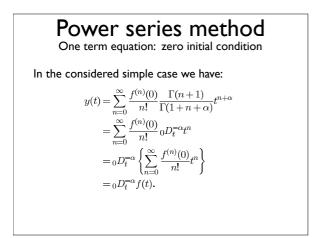


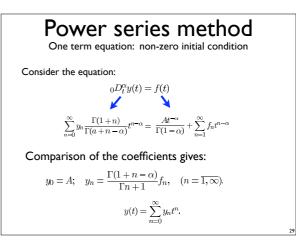






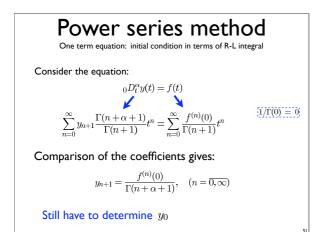


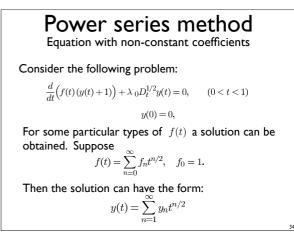


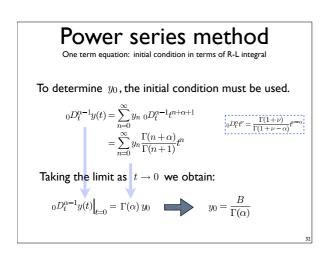


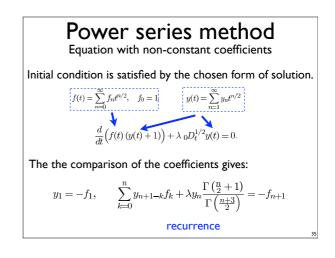
Power series method One term equation: weak singularity in the RHS
$ \begin{array}{ll} \mbox{Suppose} & f(t)=t^\beta g(t), (\beta>-1), \qquad g(t)=\sum_{n=0}^\infty \frac{g^{(n)}(0)}{n!}t^n. \\ \mbox{ and } & \alpha+\beta>0 \end{array} $
Look for the solution in the form: $y(t) = t^{\alpha+\beta} \sum_{n=0}^{\infty} y_n t^n = \sum_{n=0}^{\infty} y_n t^{n+\alpha+\beta}$
Then the coefficients in the solution are:
$y_n = \frac{\Gamma(1+n+\beta) g^{(n)}(0)}{\Gamma(1+n+\alpha+\beta) \Gamma(n+1)}, (n = \overline{1, \infty}).$

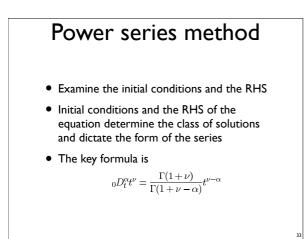
Power series method One term equation: initial condition in terms of R-L integral	
${}_0D_t^\alpha y(t) = f(t), (t>0) \qquad \qquad$	i,
$_{0}D_{t}^{\alpha-1}y(t)\Big _{t=0}=B$	
Suppose that the RHS can be expanded in Taylor serie	s:
$f(t) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} t^n$	
We can look for the solution in the form:	
$y(t) = t^{\alpha - 1} \sum_{n=0}^{\infty} y_n t^n = \sum_{n=0}^{\infty} y_n t^{n+\alpha - 1}$	
	20

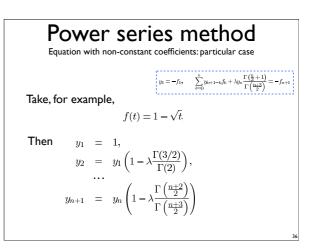












Power series methodEquation with non-constant coefficients: even more particular caseIf we take
$$\lambda = \frac{\Gamma\left(\frac{n+2}{2}\right)}{\Gamma\left(\frac{n+3}{2}\right)}$$
then $\lambda = \frac{\Gamma(2)}{\Gamma(3/2)} = \frac{2}{\sqrt{\pi}}, \quad y(t) = \sqrt{t}:$ $\lambda = \frac{\Gamma(5/2)}{\Gamma(2)} = \frac{3\sqrt{\pi}}{4}, \quad y(t) = \sqrt{t} + \left(1 - \frac{3\pi}{8}\right)t.$

Power series methodTwo-term nonlinear equationNumber of the following problem:And
$$y_1$$
 are given constants $_0D_t^{1/2}y(t) - \lambda(y(t) - y_0)^2 = 0$, $(t > 0)$ $y(0) = 0$ The solution can have the form: $y(t) = \sum_{n=1}^{\infty} y_n t^{n/2}$ (because $_0D_t^{1/2}y(t)$ and $(y - A)^2$ both give the series of the same form)

