

Interpolation of operations $f, \frac{d f}{d t^{2}}, \frac{d^{2} f}{d t^{2}}, \frac{d^{\beta} f}{d t^{3}}, \ldots$ $f, \int f(t) d t, \int d t f_{f(t) d t}, \int d t \int_{d t} f_{f(t) d t}, \ldots$ $\ldots, \frac{d^{-2} f}{d t^{-2}}, \frac{d^{-1} f}{d t^{-1}}, f, \frac{d f}{d t^{\prime}}, \frac{d^{2} f}{d t^{2}}, \ldots$	L. Euler (1730) $\begin{gathered} \frac{d^{n} x^{m}}{d x^{n}}=m(m-1) \ldots(m-n+1) x^{m-n} \\ \Gamma(m+1)=m(m-1) \ldots(m-n+1) \Gamma(m-n+1) \\ \frac{d^{n} x^{m}}{d x^{n}}=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n} . \end{gathered}$ Euler suggested to use this relationship also for negative or non-integer (rational) values of n. Taking $m=1$ and $n=\frac{1}{2}$, Euler obtained: $\frac{d^{1 / 2} x}{d x^{1 / 2}}=\sqrt{\frac{4 x}{\pi}} \quad\left(=\frac{2}{\sqrt{\pi}} x^{1 / 2}\right)$	A \cdots \qquad

S. F. Lacroix adopted Euler's derivation for his successful textbook (Traité du Calcul Différentiel et du Calcul Intégral, Courcier, Paris, t. 3, 1819; pp. 409-410). tratré ciminetarire Calcul différentiel CALCUL INTÉGRAL, 	J. Liouville (1832-1855) Three approaches: I. Following Leibniz:	

J. B. J. Fourier (1820-1822)

The first step to generalization of the notion of differentiation for arbitrary functions was done by J. B. J. Fourier (Théorie Analytique de la Chaleur, Didot, Paris, 1822; pp. 499-508).
After introducing his famous formula

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(z) d z \int_{-\infty}^{\infty} \cos (p x-p z) d p
$$

Fourier made a remark that

$$
\frac{d^{n} f(x)}{d x^{n}}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(z) d z \int_{-\infty}^{\infty} \cos \left(p x-p z+n \frac{\pi}{2}\right) d p,
$$

and this relationship could serve as a definition of the n-th order derivative for non-integer n

J. Liouville (1832-1855)

Three approaches:
II. Integrals of non-integer order:
$\int^{\mu} \Phi(x) d x^{\mu}=\frac{1}{(-1)^{\mu} \Gamma(\mu)} \int_{0}^{\infty} \Phi(x+\alpha) \alpha^{\mu-1} d \alpha$
$\int^{\mu} \Phi(x) d x^{\mu}=\frac{1}{\Gamma(\mu)} \int_{0}^{\infty} \Phi(x-\alpha) \alpha^{\mu-1} d \alpha$
or (after the substitution $\tau=x+\alpha, \tau=x-\alpha$)
$\int^{\mu} \Phi(x) d x^{\mu}=\frac{1}{(-1)^{\mu} \Gamma(\mu)} \int_{x}^{\infty}(\tau-x)^{\mu-1} \Phi(\tau) d \tau$
$\int^{\mu} \Phi(x) d x^{\mu}=\frac{1}{\Gamma(\mu)} \int_{-\infty}^{x}(x-\tau)^{\mu-1} \Phi(\tau) d \tau$.

N. H. Abel (1823-1826)

N. H. Abel: Solution de quelques problèmes à l'aide Herik Abel, vol. 1 Go3 Wh, Clwi i. 1881, pp. 1118. In fact, Abel solved the equation

$$
\int_{0}^{x} \frac{s^{\prime}(\eta) d \eta}{(x-\eta)^{\alpha}}=\psi(x)
$$

for an arbitrary α (and not just for $\alpha=\frac{1}{2}$):

$$
s(x)=\frac{\sin (\pi \alpha)}{\pi} x^{\alpha} \int_{0}^{1} \frac{\psi(x t) d t}{(1-t)^{1-\alpha}} .
$$

After that, Abel expressed the obtained solution with the help of an integral of order α :

$$
s(x)=\frac{1}{\Gamma(1-\alpha)} \frac{d^{-\alpha} \psi(x)}{d x^{-\alpha}}
$$

J. Liouville (1832-1855)

Three approaches:
III. Derivatives of non-integer order:

$$
\begin{aligned}
\frac{d^{\mu} F(x)}{d x^{\mu}}= & \frac{(-1)^{\mu}}{h^{\mu}}\left(F(x)-\frac{\mu}{1} F(x+h)+\right. \\
& \left.+\frac{\mu(\mu-1)}{1 \cdot 2} F(x+2 h)-\ldots\right) \\
\frac{d^{\mu} F(x)}{d x^{\mu}}= & \frac{1}{h^{\mu}}\left(F(x)-\frac{\mu}{1} F(x-h)+\right. \\
& \left.+\frac{\mu(\mu-1)}{1 \cdot 2} F(x-2 h)-\ldots\right)
\end{aligned}
$$

(Equality is in the sense $\lim _{h \rightarrow 0}$)

Liouville was the first, who realized the possibility of consid-
ereation of left-sided and right-sided fractional integrals and derivatives.

Example: Heaviside's unit step	"Short memory" principle Coefficients in the Grünwald-Letnikov formula:	A. $=$

G. M. Mittag-Leffler

Professor Donald E. Knuth, creator of TEX:
"As far as the spacing in mathematics is concerned. I took Acta Mathematica, from 1910 approximately; this was a journal in Sweden ... Mittag-Leffler was the editor and his wife was very rich, and they had the highest budget for making quality mathematics printing. So the typography was especially good in Acta Mathematica."
(Questions and Answers with Prof. Donald E. Knuth, Charles University, Prague, March 1996

Analytical methods for FDEs

- Integral transforms
(Laplace, Fourier, Mellin)
- Power series method
- Babenko's symbolic method
- Method of orthogonal polynomials
- Fractional Green's function

Mittag-Leffler function: definition

$$
\begin{gathered}
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)}, \quad(\alpha>0, \quad \beta>0) \\
E_{1,1}(z)=e^{z}, \\
E_{2,1}\left(z^{2}\right)=\cosh (z), \quad E_{2,2}\left(z^{2}\right)=\frac{\sinh (z)}{z} . \\
E_{1 / 2,1}(z)=e^{z^{2}} \operatorname{erfc}(-z) ; \\
\operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^{2}} d t .
\end{gathered}
$$

Laplace transform method LT of the Riemann-Liouville derivative:
$L\left\{{ }_{0} D_{t}^{a} f(t) ; s\right\}=s^{a} F(s)-\sum_{k=0}^{n-1} s^{k}\left[{ }_{0} D_{t}^{a-k-1} f(t)\right]_{t=0}$

$$
(n-1<\alpha \leq n) .
$$

Example LT-1:

$$
{ }_{0} D_{t}^{1 / 2} f(t)+a f(t)=0, \quad(t>0) ;
$$

$$
\left[{ }_{0} D_{t}^{-1 / 2} f(t)\right]_{t=0}=f_{0}
$$

$F(s)=\frac{f_{0}}{s^{1 / 2}+a}$,

$$
f(t)=f_{0} t^{-1 / 2} E_{\frac{1}{2}, 2}(-a \sqrt{t}) .
$$

Fractional Green's function: definition (*) $\begin{aligned} &) \quad{ }_{0} \mathcal{C}_{t} y(t)=f(t) ;\left.\quad{ }_{0} D_{t}^{\sigma_{k}-1} y(t)\right\|_{t=0}=b_{k}, \quad k=1, \ldots, n \\ & { }_{a} \mathcal{C}_{t} y(t) \equiv{ }_{a} D_{t}^{\sigma_{n}} y(t)+\sum_{k=1}^{n-1} p_{k}(t){ }_{a} D_{t}^{\sigma_{n}-k} y(t)+p_{n}(t) y(t), \\ & { }_{a} D_{t}^{\sigma_{k}} \equiv{ }_{a} D_{t}^{\alpha_{k}}{ }_{a} D_{t}^{\alpha_{k-1}} \ldots{ }_{a} D_{t}^{\alpha_{1} ;}{ }_{a} D_{t}^{\sigma_{k}-1} \equiv{ }_{a} D_{t}^{\alpha_{k}-1}{ }_{a} D_{t}^{\alpha_{k-1}} \ldots{ }_{a} D_{t}^{\alpha_{1} ;} ; \\ & \sigma_{k}=\sum_{j=1}^{k} \alpha_{j}, \quad(k=1,2, \ldots, n) ; \quad 0 \leq \alpha_{j} \leq 1, \quad(j=1,2, \ldots, n) . \end{aligned}$ Definition. Function $G(t, \tau)$ satisfying the following conditions a) ${ }_{\tau} \mathcal{L}_{t} G(t, \tau)=0$ for every $\tau \in(0, t)$; $\begin{aligned} & \lim _{\tau \rightarrow t-0}\left(\tau \mathcal{D}_{t}{ }^{\kappa}-G(t, \tau)\right)= \\ & \left(\delta_{k, n}\right. \text { is Kronecker's delta) } \end{aligned}$ $\lim _{\tau, t \rightarrow+0}\left({ }_{\tau} \mathcal{D}_{t}^{\sigma_{k}} G(t, \tau)\right)=0, \quad k=0,1, \ldots, n-1$ is called Green's function of equation (*)	Fractional Green's function: examples Three-term equation: $\begin{aligned} a_{0} D_{t}^{\beta} y(t) & +b_{0} D_{t}^{a} y(t)+c y(t)=f(t) \\ G_{3}(t)= & \frac{1}{a} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\left(\frac{c}{a}\right)^{k} \times \\ & \times t^{\beta(k+1)-1} E_{\beta-\alpha, \beta+a k}^{(k)}\left(-\frac{b}{a} t^{\beta-a}\right) \end{aligned}$	A. \pm

Fractional Green's function: utilization $y(t)=\int_{0}^{t} G(t, \tau) f(\tau) d \tau$ For equations with constant coefficients: $\begin{gathered} y(t)=\sum_{k=1}^{n} b_{k} \psi_{k}(t)+\int_{0}^{t} G(t-\tau) f(\tau) d \tau, \\ b_{k}=\left.{ }_{0} \mathcal{D}_{t}^{\sigma_{k}-1} y(t)\right\|_{t=0} \end{gathered}$ $\psi_{k}(t)={ }_{0} \mathcal{D}_{t}^{\sigma_{n}-\sigma_{k}} G(t), \quad{ }_{0} \mathcal{D}_{t}^{\sigma_{n}-\sigma_{k}} \equiv{ }_{a} D_{t}^{\alpha_{n}{ }_{n}}{ }_{a} D_{t}^{\alpha_{n-1}} \cdots{ }_{a} D_{t}^{\alpha_{k+1}}$	Numerical methods for FDEs \qquad - Fractional order differences - Matrix approach - Quadrature formulas - "Short memory" principle ${ }_{a} D_{t}^{\alpha} f(t) \approx{ }_{t-L} D_{t}^{\alpha} f(t)$

Example: Riesz kernel $\frac{1}{\Gamma(1-\alpha)} \int_{-1}^{1} \frac{y(\tau) d \tau}{\|t-\tau\|^{\alpha}}=1, \quad(-1<t<1)$ Exact solution: $y(t)=\pi^{-1} \Gamma(1-\alpha) \cos \left(\frac{\alpha \pi}{2}\right)\left(1-t^{2}\right)^{(\alpha-1) / 2}$ Numerical solution $\begin{gathered} { }_{-1} D_{t}^{-(1-\alpha)} y(t)+{ }_{t} D_{1}^{-(1-\alpha)} y(t)=1, \\ \left(B_{N}^{-(1-\alpha)}+F_{N}^{-(1-\alpha)}\right) Y_{N}=F_{N} \end{gathered}$	Example (Caputo derivatives)	

| New rheological models. |
| :--- | :--- | :--- |
| New mathematical models (laws)
 of deformation of viscoelastic materials. |

Analogue realization

| Fractor: Analogue device |
| :--- | :--- |
| Fractional Calculus Day at usu, April 19,2005 |

Right-sided R-L integral

| Physical interpretation |
| :--- | :--- | :--- |
| of Stieltjes integral (1) |

Physical interpretation of the Riemann-Liouville integral: "shadows of the past"

$$
\begin{aligned}
& S_{o}(t)=\int_{0}^{t} v(\tau) d g_{t}(\tau)={ }_{0} I_{t}^{\alpha} v(t), \\
& g_{t}(\tau)=\frac{1}{\Gamma(\alpha+1)}\left\{t^{\alpha}-(t-\tau)^{\alpha}\right\} .
\end{aligned}
$$

The left-sided Riemann-Liouville fractional integral of the individual speed $v(\tau)$ of a moving object, for which the relationship between its individual time τ and the cosmic time T at each individual time instance t is given by the known function $T=g_{t}(\tau)$, represents the real distance $S_{o}(t)$ passed by that object.

The end? No! The beginning!	Instead of conclusion (2) \qquad S. Westerlund (1991): "Expressed differently, we may say that Nature works with fractional time derivatives."

