Good day, ladies and gentlemen. Dobrý deň, dámy a páni.

I would like to present our experience of "energy concepts". Chcel by som predstaviť naše skúsenosti z "energetických koncepcií".

Energy concepts for heating, cooling and electricity

from renewable and fossil fuels

Project Development - Project organization/-management, planning, implementation and commissioning

EHSP - Engineering Solutions

Consulting Engineers for Building Services

Dolmarstrasse 14 in 96817 Meiningen, Germany

Phone +49 3693 840 30 / Fax +49 3693 840 333 e-Mail office@ehsp.de

CLW1 UG liability limited

Office for Project development of innovative energy concepts

Londonstrasse 22 in 97424 Schweinfurt, Germany

Phone +49 9721 605 850 / Fax +49 921 605 799 e-Mail office@ehsp.de

Energy concepts for heating, cooling and electricity

from renewable and fossil fuels

contents

1. Fundamentals of our energy concepts sustainability and energy efficiency

- 2. Combined heat and power (CHP) plants
- 3. Thermal gasification of wood gas engines and hot gas engines
- 4. Development of high-temperature combustion
- 5. Bivalent heat and power

- small decentralized CHP
- systems and modules
- thermal storage in biomass cogeneration plant

sustainability and energy efficiency

Sustainability Global Warming - Global Challenges

- 1. Limiting, distribution and trading of rights to CO² emissions
- 2. Support and exchange of climate-friendly technologies
- 3. Protection and sustainable use of forests
- 4. International support for adaptation
- 5. Strengthening the Development Policy

Energy efficiency of tomorrow - a balance between economic and ecological

- 1. Reduction of fossil fuels such as coal, oil and gas
- 2. Use of natural resources such as solar, wind and biomass
- 3. Energy consumption in accordance with the growth in the natural
- 4. Consideration of ecosystems in other parts of
- 5. Joint projects to develop and utilize innovative technologies

We have knowledge, understanding, and imagination. If we sum all at one plant, we will shape the future Victor Desigo

sustainability and energy efficiency

DIN V 18599 – Energy efficiency of buildings

design and implementation

Bild 1 - Schematische Darstellung des Bilanzumfangs von DIN V 18599

- Consideration of the environment at the site, determine the resources and data on climate throughout the year
- 2. Review of energy sources at the site and in the region
- 3. Classification of objects in zones of in the building and the type of use
- 4. Calculation of the demand for useful energy, final energy and primary energy for heating, cooling, ventilation, hot water and lighting
- 5. System design for bivalent producing of heat, cooling and electricity
- 6. Energy concept from renewable and fossil fuels

sustainability and energy efficiency

Building Simulation

Review of heating, cooling, ventilation, lighting and hot water for over a year

sustainability and energy efficiency

Building and Energy Management

Measurement and metering for water, heat, cold and electricity

2. Combined heat and power (CHP) plants

small decentralized CHP

Bivalent heat and electricity

Natural gas supply for the economic base

Hospital Bayreuth Medical treatment with 1100 beds, Emergency room, 7 surgical units and intensive care units

Specifications:		Combined Heat and Powe		
Heat	4.5 MW	3 x 370 kW CHP		
Cold	1,5 MW	1 x 800 kW absorber		
Power	1.5 MW	3 x 240 kW CHP		
		CHP – start up in 2012		

2. Combined heat and power (CHP) plants

small decentralized CHP

Overview of the system components and assessment of the energy flow

EHSP Engineering Solutions

3. Thermal gasification of wood

Reference Germany – Thüringen – Tabarz

sponsored by European Regional Development Found ERDF Free State Thüringen Thüringen development bank

2007 – 2009
2010 – 2011
October 2011

gas engines and hot gas engines

Heat and power generation with biomass - wood chips

3. Thermal gasification of wood

gas engines and hot gas engines

Countercurrent gasification with heat and electricity via Stirling engine Stirling

Fuel: Firing:

Consumption:

heat output: Heat storage electrical power:

Operating hours per year:

6500 - 7500

800 kW

4 x 170 kW

Wood chips with moisture 45 % to 55 % lumpiness - length to 12 cm

max. 4 x 70 kg/h per unit

with 20,000 + 40,000 l

4 x 35 kW (140 kW)

750 °C to 1050°C

flue gas Stirling engine working medium: Helium

750 °C to 850 °C

55 °C to 75°C

3. Thermal gasification of wood

gas engines and hot gas engines

gasification agent recycled fluegas preheated combustion air preheated gasification air 6,1 % heat loss chimney air-preheater combustion econoair mizer preheater thermal output economizer thermal output nterm. plant = 72.1 combustion gasifier plant chamber Stirling thermal output Stirling engine engine $\eta_{\text{electr. eng}} = 28\%$ electrical output Stirling engine 7 electr. plant = 17,5 % Energy Flow in a Stirling DK Combined Heat and Power Plant 0.5 % 3.8 % heat loss plant heat loss STIPLING Stirling engine

Countercurrent gasification and hot gas engine Stirling - emissions and energy flow

Parameters	Biogas IC ¹	Stirling Biogas EC	Unit	
Methane Number	80	No restrictions	-	
Calorific value	>5	>3	kWh/Nm3	
Chlorine	<100	<100	mg/Nm3CH4	
Fluoride	<50	No restrictions	mg/Nm3CH4	
Total-chlorine-fluoride	<100	<100	mg/Nm3CH4	
Dust < 5µm	<5	No restrictions	mg/Nm3CH4	
Oil vapour	<400	No restrictions	mg/Nm3CH4	
Silicon	<5	No restrictions	mg/Nm3CH4	
Sulphur	<300	<300	mg/Nm3	
Hydrogen sulphide	<200/<306	<200/<306	ppm/mg/Nm3	
Ammonia	<50/<38	No restrictions	ppm/mg/Nm3	

Furthermore, the internal combustion biogas engine requires burnable gas to be fed to the engine in the following state:

Gas pressure on tapping (mbar)	20≤p ≥ 50
Max. gas pressure fluctuations after zero pressure controller (mbar)	±≤3
Max gas temperature (°C)	30
Max relative humidity (%)	60

extension 2013

Gas cleaning over 3 stages - cooling, filtration 1 and 2 to pure gas for engine operation in CHP

Heat Power

380 kW

Electrity power

4. Development of high-temperature combustion

systems and modules

Direct combustion of wood chips with Stirling engine

K.<u></u>

Firing: Heat output: Temperatures VL/RL:	175 kW 80 kW 80 °C/60 °C		
electrical power: Current efficiency: Voltage:	35 kW 28 % 400 V 50 Hz		
Plant overall efficiency:	> 96 %		
Operating hours per year:	6.000 to 7.000		
Fuel:	Wood chips - moisture to 50 % integrated process interruption		
Consumption figure baseload:	per Day 2 x 5,11 m³ per Day 2 x 419 t (at 2,64 kWh/kg)		
Storehouse for 7 days:	at least 75 m ³ recommendation		
Green emissions exhaust	(CO < 10; NOx <150 ppm)		
environmentally conscious - Pat Pilot plant Small series production	ented technology 2012 2013		

4. Development of high-temperature combustion

systems and modules

Direct combustion of wood chips and expansion of the process

with production of synthetic diesel and additional production of electricity with high and low temperature motors

environmentally friendly - Patented technology

Pilot plant	2013
Small series production	2014

option 1

Circulation - high temperature 450 °C

+ Evaporation of organic medium

+ Turbine to generate electricity

option 2

Circulation - low temperature 90 °C

- + Evaporation of organic medium
- + Turbine to generate electricity

5. Bivalent heat and power

thermal storage in biomass cogeneration plant

Reference Germany – Bayern Bivalent heat and power economic use of biomass and natural gas

Hospital Bayreuth Hohe Warte Medical treatment with 1100 beds, Emergency room, 7 surgical units and intensive care units

Specifications	:	Biomass and gas			
Heat	3.5 MW	1600 kW + 700 kW			
Heat storage		with 40,000 + 60,000 l			
Cold	1,5 MW	1 x 350 kW absorber			
Power	1.2 MW	50 kW + 480 kW CHP			

environmentally friendly Sponsoring by Free State Bayern Planing 2008 – 2010 execution 2011 – 2012 Start up December 2012

5. Bivalent heat and power

thermal storage in biomass cogeneration plant

Bivalent heat and power economic use of biomass and natural gas

5. Bivalent heat and power

thermal storage in biomass cogeneration plant

sustainable energy

heat storage as an energy manager

Storage volume in I	100.000,00	100.000,00	100.000,00	100.000,00	100.000,00	100.000,00	100.000,00	100.000,00
temperature leading in °C	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
temperature return in °C	60,00	60,00	60,00	60,00	60,00	60,00	60,00	60,00
Discharge time in hours	12,00	10,00	8,00	6,00	4,00	3,00	2,00	1,00
performance heat in kW	376,32	451,59	564,49	752,65	1.128,97	1.505,30	2.257,94	4.515,89
storage volume in I	40.000,00	40.000,00	40.000,00	40.000,00	40.000,00	40.000,00	40.000,00	40.000,00
temperature leading in °C	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
temperature return in °C	60,00	60,00	60,00	60,00	60,00	60,00	60,00	60,00
Discharge time in hours	12,00	10,00	8,00	6,00	4,00	3,00	2,00	1,00
performance heat in kW	150,53	180,64	225,79	301,06	451,59	602,12	903,18	1.806,36

Reference Germany - Thüringen Tabarz Wellness Heat storage - Buffer storage 20,000 l + 40,000 l

Reference Germany - Bayern Hospital Bayreuth Hohe Warte Heat storage - Buffer storage

Buffer storage 40.000l + 60,000 l

Thank you for your attention

Ďakujem za vašu pozornosť

OUR SERVICES

Project Development - Project organization/-management, planning, implementation and commissioning

YOUR CONTACT

Dipl. Ing. (FH) Lutz Wagenschwanz

phone +49 151 14840303

CLW1 UG liability limited

Office for Project development of innovative energy concepts

Londonstrasse 22 in 97424 Schweinfurt, Germany

Phone +49 9721 605 850 / Fax +49 921 605 799 e-Mail office@ehsp.de

We have knowledge, understanding, and imagination. If we sum all at one plant, we will shape the future Victor Desigo